
i
i

i
i

i
i

i
i

Tomas Krilavičius

Hybrid Techniques for Hybrid Systems

i
i

i
i

i
i

i
i

Graduation committee:

Prof. Dr. Ir. A.J. Mouthaan University of Twente, The Netherlands
Prof. Dr. H. Brinksma (promotor) University of Twente / Embedded Sys-

tems Institute, The Netherlands
Dr. Ir. R. Langerak (assistent-promotor) University of Twente, The Netherlands
Prof. Dr.-Ing. S. Kowalewski RWTH Aachen University, Germany
Prof. Dr. K.G. Larsen Aalborg University, Denmark
Dr. J.W. Polderman University of Twente, The Netherlands
Prof. Dr. A.J. van der Schaft University of Groningen, The Nether-

lands
Prof. Dr. F.W. Vaandrager Radboud University Nijmegen, The Ne-

therlands

IPA Dissertation Series 2006-15.
CTIT Ph.D.-Thesis Series No. 06-90, ISSN 1381-3617.

The research reported in this dissertation has been carried out under the auspices of the Institute
for Programming Research and Algorithmics (IPA) and within the context of the Centre for
Telematics and Information Technology (CTIT). The funding of the research was provided by
the NWO Grant through project number 617.023.002 (Compositional Analysis and Specification
of Hybrid Systems).

Translation of summary: A. Nijmeijer and R. Langerak.
Typeset by LATEX.
Cover: A. Jonkutė.
Printed: Febodruk - http://www.febodruk.nl.

Copyright c© 2006 by T. Krilavičius, Enschede, The Netherlands.

ISBN: 90-365-2397-4

http://www.febodruk.nl

i
i

i
i

i
i

i
i

HYBRID TECHNIQUES FOR HYBRID SYSTEMS

DISSERTATION
to obtain the doctor’s degree
at the University of Twente, on the authority of
the rector magnificus, Prof. Dr. W.H.M. Zijm,
on account of the decision of the graduation committee
to be publicly defended
on Wednesday, September 6, 2006 at 15:00

by

Tomas Krilavičius
born on 14 February 1974
in Alytus, Lithuania

i
i

i
i

i
i

i
i

The dissertation is approved by:

Prof. Dr. H. Brinksma (promotor)

i
i

i
i

i
i

i
i

Acknowledgements

I am thankful to many people for their help and support during my work on the thesis.
First of all I would like to thank my promotor Ed Brinksma for guiding me through

the not always serene waters of research. I also wish to thank my advisor Rom
Langerak who has helped me to acclimatise in the Formal Methods group and the
world of hybrid systems.

I would like to thank my former supervisors Valentinas Kriaučiukas and Henrikas
Pranevičius for introducing me to the formal methods and academia.

I thank the members of my graduation committee Stefan Kowalewski, Kim Larsen,
Jan Willem Polderman, Frits Vaandrager, and Arjan van der Schaft for assessing my
manuscript and giving valuable comments. I also received useful comments from
Henrik Bohnenkamp, Germanas Budnikas, Mariëlle Stoelinga, Ivan S. Zapreev and
Rasa Zulytė. Moreover, I thank my master students Arend van Putten and Helen
Schonenberg for asking the right questions and in that way improving my dissertation.

I would like to thank our secretaries Ellen Roberts-Tieke and Joke Lammerink. I
am indebted to Joke, who helped me to survive my first days in Enschede and made
my stay in the Netherlands a lot easier.

I had the pleasure to participate in the EU Ametist project, where I have met a
lot of nice people. I would like to thank all of them, especially Biniam Gebremichael,
Angelika Mader, Sebastian Panek and Gera Weiss.

I am member of an hybrid systems conspiracy called the miniCASH. I would like
to thank Agung Julius, Rajashekar Kakumani, Rom Langerak and Stefan Strubbe for
fruitful discussions during our scientific lunch meetings.

I thank “moksliukai” Erinija Pranckevičienė, Gailius Raškinis, Aušra Saudargienė
and Minija Tamošiūnaitė for keeping me in touch with science in Lithuania.

Thanks to Axel Belinfante, Machiel van der Bijl, Laura Brandàn Briones, Holger Her-
manns, David N. Jansen, Joost-Pieter Katoen, Piotr Kordy, Marcos E. Kurban, Andre
Nijmeijer, Arend Rensink, Theo Ruys, Pedro D’Argenio, Conrado Daws, Ric Klaren,
Patrick Sathyanathan, Rajasekhar Kakumani, István Nagy, Joost Noppen, Yaroslav S.
Usenko, Gebremichael Biniam and others for being nice colleagues and sharing office
space, hallway and Fridays in Rappa with me.

I want to thank my friends, who made my life pleasant in Enschede: Ivan S. Zapreev,
Mass S. Lund, Suzana Andova, Yaroslav S. Usenko, Andre Nijmeijer, Laura Brandàn
Briones, Liudvika Leišytė, Žygimantas Medelis and Ivan and Lesia Krechetov.

I could seldom meet my Lithuanian friends, but we have kept in touch over all
these years: Aurimas Švedas, Irmantas Švedas, Airida Rekštytė, Laimonas Butkus,
Linas Vaitulevičius, Edita Mockutė, Danas Kazlauskas, Redas Kazlauskas and Jonas
Sergejenka.

Aš dėkoju šeimos nariams ir giminėms, kurie man padėjo studijose ir gyvenime,

v

i
i

i
i

i
i

i
i

A

ypač tėvams Antanui Krilavičiui ir Jūratei Krilavičienei, broliui Kȩstui Krilavičiui,
Magdutei ir Alfonsui Raškiniams, Aldonai Valaitytei, Daliai Jenčiuvienei, bei puseserei
Laimai Zubrienei (Blaškevičiūtei).

Thanks to Agnė Jonkutė just for being with me.

vi

i
i

i
i

i
i

i
i

Contents

Acknowledgements v

Table of Contents vii

1 Introduction 1
1.1 Hybrid systems . 2
1.2 Major problems in the area of hybrid systems 3

1.2.1 Modelling of hybrid systems . 3
1.2.2 Analysis of hybrid systems . 3
1.2.3 Deployment of hybrid systems’ models 5
1.2.4 Testing of hybrid systems models 6

1.3 Main results . 6
1.4 Outline of the dissertation . 7

2 Bestiarium of hybrid systems 11
2.1 Introduction . 11
2.2 Examples of hybrid systems . 11

2.2.1 A bouncing ball . 12
2.2.2 A thermostat . 13
2.2.3 A leaking gas burner . 14
2.2.4 A fluid level controller . 15
2.2.5 Railroad gate control . 17
2.2.6 Batch plant control . 18
2.2.7 Mobile vehicles . 21

2.3 Conclusions . 23

3 Overview of models for hybrid systems 25
3.1 Introduction . 25
3.2 Classification of hybrid systems . 25
3.3 Hybrid formalisms . 30

3.3.1 Grouping hybrid formalisms . 30
3.3.2 Piecewise affine systems . 32
3.3.3 Mixed logical dynamical systems 33
3.3.4 Complementarity systems . 34
3.3.5 Max-min-plus-scaling systems . 35
3.3.6 Hybrid automata . 36
3.3.7 Hybrid behavioural automaton . 37
3.3.8 Hybrid input/output automata . 38

vii

i
i

i
i

i
i

i
i

T  C

3.3.9 Process algebras for hybrid systems 40
3.3.10 Masaccio . 46
3.3.11 Charon . 47
3.3.12 Bond graphs . 47
3.3.13 Modelica . 49

3.4 Conclusions . 50

4 Stability analysis for hybrid automata 51
4.1 Introduction . 51

4.1.1 Stability . 51
4.1.2 Hybrid stability . 52

4.2 Notions of stability and hybrid stability 54
4.2.1 Stability of dynamical systems . 54
4.2.2 Stability of hybrid automata . 54

4.3 Estimating stability of hybrid automaton 55
4.3.1 Contractive cycles and stability of hybrid automaton 56
4.3.2 Gain automata and algorithm . 57
4.3.3 Stability of two-dimensional linear continuous hyperplane hy-

brid automaton . 60
4.4 Conservative estimation of gains . 60

4.4.1 Gains . 61
4.4.2 Calculation of gains . 62
4.4.3 Optimising the Lyapunov function choice 63

4.5 Conclusions . 64

5 Behavioural Hybrid Process Calculus 65
5.1 Introduction . 65
5.2 Behavioural approach . 67
5.3 Trajectories . 68
5.4 Hybrid transition systems . 75

5.4.1 Bisimulation . 76
5.5 Language and operational semantics . 77

5.5.1 Language . 77
5.5.2 Operational semantics of BHPC 79
5.5.3 Consistent signal flow . 83
5.5.4 Congruence property . 84

5.6 Expansion law . 84
5.7 Derived BHPC operators . 85

5.7.1 Parametrisation of action prefix . 85
5.7.2 Idling . 85
5.7.3 Delays . 86
5.7.4 Guard . 86

5.8 Application of BHPC . 86
5.8.1 Bouncing ball . 86
5.8.2 Thermostat . 87
5.8.3 Dry friction . 88
5.8.4 Two tanks . 89

viii

i
i

i
i

i
i

i
i

T  C

5.9 An experimental version of calculus . 90
5.10 Conclusions . 91

6 BHPC in context of related frameworks 93
6.1 Introduction . 93
6.2 BHPC and hybrid dynamical systems . 93
6.3 BHPC and transition systems based approaches 94

6.3.1 Hybrid automata and BHPC . 96
6.4 BHPC and simulation languages . 98
6.5 Conclusions . 98

7 Simulation of Behavioural Hybrid Process Calculus 99
7.1 Introduction . 99

7.1.1 Simulation of continuous and discrete systems 100
7.1.2 Simulation of hybrid systems . 101

7.2 Behavioural Hybrid Process Calculus simulation algorithm 102
7.2.1 Language . 102
7.2.2 Simulation of process algebras . 103
7.2.3 Abstract simulation algorithm for BHPC 104
7.2.4 Transformation to normal form . 106
7.2.5 Simulating discrete events . 110
7.2.6 Simulating continuous-time behaviour 111

7.3 Non-determinism . 115
7.4 Visualisation of models . 117
7.5 Visualisation of results . 118

7.5.1 Graphs . 119
7.5.2 Event traces and message sequence charts 119
7.5.3 Combined view . 120
7.5.4 Visualisation of components . 123

7.6 Simulation of Zeno behaviour . 124
7.7 Architecture . 124
7.8 Simulation modes . 128
7.9 Tools overview . 129
7.10 Conclusions . 133

8 Concluding remarks 135
8.1 Hybrid systems . 135
8.2 Modelling of hybrid systems . 135
8.3 Analysis of hybrid systems . 137
8.4 General remarks . 138

A Stability 141
A.1 Proofs from Section 4.3 . 141
A.2 Optimising the Lyapunov function choice 142

ix

i
i

i
i

i
i

i
i

T  C

B Proofs from Chapter 5 145
B.1 Proof of Theorem 5.5.4 . 145
B.2 Proof of Theorem 5.5.6 . 147

B.2.1 Formats based proof . 150
B.3 Proofs of Theorems 5.6.2 and 5.6.3 . 150

B.3.1 Proof of Theorem 5.6.2 . 150
B.3.2 Proof of Theorem 5.6.3 . 153

C Functions from Chapter 7 157

D Bhave prototype 161
D.1 Functionality and input language . 161

D.1.1 Simplified treatment of parameters 163
D.2 Technical implementation details . 164
D.3 Examples . 164
D.4 Conclusions . 166

Bibliography 167

Index 183

Summary 189

Samenvatting 191

x

i
i

i
i

i
i

i
i

All of the true things I am about to tell you are
shameless lies.

Kurt Vonnegut, Jr.

1
Introduction

The Industrial Revolution was the major technological, socio-economical and cultural
change in the late XVIIIth and the early XIXth century, when an economy based on
manual labour was replaced to one dominated by industry and machine manufacture.
It was one of the principal factors that shaped the Western Civilisation as we know.
The Digital Revolution is reshaping our lives now. Digital devices change people’s
everyday life and the way businesses operate, by bringing a higher level of automati-
sation. Such changes may be convenient and beneficial, but they make us vulnerable
and dependent too.

One of the products of the Digital Revolution is embedded systems that are a special-
purpose computer systems completely encapsulated by the device it controls. We
encounter such systems everywhere in our life. Our day usually starts with an elec-
trical alarm clock. We wash in water warmed using a digitally controlled kettle, our
heating is controlled by a digital thermostat. We drink coffee produced by a coffee
machine that has basic digital controls. Most means of transportation that help us to
reach our workplace, like cars, buses, trains are full of digital controllers. Entrance
sensor-controlled doors at the office are awaiting for us, and then an elevator. The
computers, normal and cellular phones, printers, scanners, faxes and again coffee ma-
chines are part of everyday office life. In the evening to get dinner we use microwaves
or cookers. And then a remote control for TV, VCR, DVD or an integrated audio/video
system.

We expect all these devices to function properly at any time we need them. While
the malfunctioning of TVs, audio systems, refrigerators or microwaves just irritates
us or leaves us hungry, the glitches in the car, air-plane, nuclear plant control systems
may threaten life, and faults in a nuclear missile control facility may bring the end to
western civilisation. It is easy to see, why it is crucial to have means to make such
systems function properly.

Research in systems and control theory provides engineers and scientists with tools

1

i
i

i
i

i
i

i
i

1. I

to solve the technological problems brought by the Industrial Revolution. Computer
science aims at providing techniques for the general use of computers. Embedded
systems is the place where these two worlds meet. The ambition to design the means
for the development of flawless and robust embedded systems brings together the
control and computer science communities. Formal analysis is one of the methods in
computer science, which helps to gain confidence in such systems.

Formal methods provide rigorous mathematically-based languages, techniques and
automated tools for modelling and analysis of software and hardware systems. There
is a number of examples of the effective use of such techniques [Clarke and Wing,
1996]. Successful examples of application in consumer electronics [Havelund et al.,
1999, Bengtsson et al., 2002], diverse communication and control protocols [David and
Yi, 2000], automotive industry [Lindahl et al., 2001, Gebremichael et al., 2004], chemical
industry [Mader et al., 2001, Bohnenkamp et al., 2004], heavy industry [Fehnker, 1999]
and other areas are easy to find.

In formal methods embedded systems are often modelled and analysed as hybrid
systems, the class of dynamical systems that combine continuous evolution and discrete
transitions.

1.1 Hybrid systems

Hybrid systems combine continuous real-time behaviour and discrete events. Discrete
events are caused by the evolution of continuous dynamics or external stimuli, and
the continuous dynamics change in response to discrete events. Often such systems
arise from the combination of an analogue continuous-time process and a digital con-
troller, common in nowadays consumer electronics and other embedded systems. Of
course, it may be just physical systems as electrical circuits with diodes and transistors,
mechanical systems with collisions or friction models with stick and slip phases.

Several examples of systems with hybrid phenomena manifestations:

• Consumer systems: (cellular) phones, TV sets, microwaves.

• Traffic control systems: Air Traffic Management, (Sea) Port Traffic Management,
Highway Supervision.

• Production process control and robotics: chemical industry, energy (production
and distribution), food industry.

• Biological systems: the cell-cycle control system.

A list of hybrid systems examples from the scientific literature is provided in Chapter 2.
Almost any system can be modelled using some hybrid formalism, therefore it does

not make sense to strive for a very general formal definition. A particular definition
of hybrid systems can be adopted depending on potential use of it. In Chapter 3 some
of them are presented. Introductions to hybrid systems are available in van der Schaft
and Schumacher [2000], De Schutter and Heemels [2004].

2

i
i

i
i

i
i

i
i

1.2. M       

1.2 Major problems in the area of hybrid systems

Essentially, research in hybrid systems aims at providing means for easy and reliable
design and production of hybrid systems. At a closer look, it can be roughly grouped
into several topics:

Modelling of hybrid systems is the process of creating an abstract model that uses
mathematical concepts to describe the behaviour of a system. In some cases
it is a transformation from a vague, natural language description to a rigorous
mathematical model of system. Consequently, it includes accumulation and
analysis of requirements and restrictions (e.g., physical, economical or even
moral), an abstraction from not so important details, a choice of formalism, etc.
But equally often an existing system or design are modelled formally for further
analysis.

Analysis of hybrid systems includes checking consistency of requirements and re-
strictions, proving or refuting properties of a model, analysis of model behaviour,
performance analysis.

Deployment of hybrid systems models includes choice of the final design of the
product, and the controller generation, code generation, and other production re-
lated activities.

Testing is a process used to assess the quality and correctness of system. The system
under test is fed input data while the output data is monitored for checking its
correctness.

1.2.1 Modelling of hybrid systems

Modelling of hybrid system is the process of creating an abstract model that uses math-
ematical language to describe the behaviour of a system. In some cases it is a trans-
formation from a vague, natural language description to a rigorous mathematical
model of a system. Frequently the requirements should be collected and refined, phys-
ical, economical and other restrictions accumulated and estimated. Depending on the
modelling goals, different formalisms can be chosen and different abstractions applied.
However, equally often the model is derived from an existing system or design. More-
over, several models have been created and analysed to obtain interesting properties
of the system.

1.2.2 Analysis of hybrid systems

Analysis of hybrid systems includes several different activities and various analysis
methods, e.g., verification and simulation. Good sources for information about analysis
of hybrid systems are van der Schaft and Schumacher [2000], De Schutter and Heemels
[2004], the proceedings of International Hybrid Systems Workshops [Grossman et al., 1993,
Antsaklis et al., 1995, Alur et al., 1996b, Antsaklis et al., 1997, 1999] and the proceedings
of International Workshops on Hybrid Systems: Computation and Control [Henzinger and
Sastry, 1998, Vaandrager and van Schuppen, 1999, Lynch and Krogh, 2000, Benedetto

3

i
i

i
i

i
i

i
i

1. I

and Sangiovanni-Vincentelli, 2001, Tomlin and Greenstreet, 2002, Maler and Pnueli,
2003, Alur and Pappas, 2004].

Verification of hybrid systems

(Formal) Verification of hybrid systems is the act of proving or refuting the correctness
of a system with respect to a certain formal specification or property. The process of
verification usually consists of several parts. A formal model of the system, containing
the possible behaviour of it, is constructed. Moreover, the requirements are formulated
in the formal language. Then, a set of rules is applied to determine whether the formal
model satisfies requirements.

Verification can be employed to analyse a wide set of various properties.

• Usually properties originating from computer science, as deadlocks [van der
Schaft and Schumacher, 2000, p.10], fairness [Katoen, 1999, p.232–233], reach-
ability [van der Schaft and Schumacher, 2000, p.111-118] are analysed using
verification. More generally they are reffered to as safety and liveness properties.

• Characteristics taking roots in the systems and control theory, e.g., stability
(Chapter 4), controllability, observability are important as well (see Polderman
and Willems [1998]).

The term verification is usually used with automatic or semi-automatic procedures in
mind. In general, the properties can be proved or refuted with pencil and paper, often
following some well-defined method or procedure. However, for bigger systems,
manual methods are impractical, if not impossible.

Model checking is one of the prevalent verification methods. It strives to explore
the full state space while examining satisfiability of interesting properties. It has the
following benefits [Katoen, 1999, p.34–37].

• Generality of the approach. It is applicable to hardware verification, software
engineering, multi-agent systems, communication protocols, embedded systems
and so forth.

• Partial verification is possible, the set of properties to be verified can be arbitrarily
chosen.

• Ease of use, i.e., model checkers can be used almost as easily as compilers.

• Sound mathematical foundations.

Unfortunately, model checking suffers from several drawbacks [Katoen, 1999, p.34–
37].

• It is more suitable for the analysis of control oriented applications, and less suited
to data-intensive applications, since the treatment of data usually implies an
infinite state space.

• Some classes of systems have decidability issues, because more often than not it
is hard to come up with a finite abstraction of an infinite state space.

• Only the model is verified, not the real system.

4

i
i

i
i

i
i

i
i

1.2. M       

• Only stated requirements are investigated.

However, even taking all these drawbacks into account, verification of hybrid systems
provides a good insight on safety and performance properties of system.

At the same time, we do not reject semi-automatic approaches, like automatic
theorem proving [Clarke and Wing, 1996, Kaufmann et al., 2000, Owre and Shankar,
2003], which can be very effective when dealing with infinite state-space systems,
but require a higher qualification of users and can easily become unmanageable for
beginners.

Simulation of hybrid systems

Simulation is a prevailing technique for the analysis of hybrid systems in industry
and, often, academia. There exists a plethora of definitions of simulation and math-
ematical simulation. We will quote a version from Cellier [1991, p.6]: “A simulation
is an experiment performed on a model”. We discuss a certain type of simulation, a
mathematical simulation, which is a coded description of an experiment with a reference
to the model to which this experiment to be applied [Cellier, 1991, p.6].

Simulation is used to analyse the response of the system to a particular inputs
according to scenario. It helps to detect the potential weaknesses and errors, and
provides information on performance of system. There is a number of simulation
tools which provide various facilities for analysis of hybrid systems. Simulation tools
and techniques are discussed in depth in Chapter 7.

1.2.3 Deployment of hybrid systems’ models

Correct hybrid systems models are used for different purposes, as code generation,
controller generation (in some sources controller synthesis or just control) and other pro-
duction related activities, as scheduling, production planning, documentation, etc.

Code generation

Often hybrid systems consist of a digital controller and an analogue process. Therefore,
an attempt to derive a software for digital controller from the system’s model seems
quite natural. Such an approach is called code generation. For more information about
code generation for timed systems see Amnell et al. [2002].

Controller generation

It is a common practice to separate a system into a plant and a controller. A plant
denotes a system to be controlled and a controller is a component of a system that
makes it operate within the desired limits, i.e., it receives outputs of the plant and
sends signals to the plant, which should steer it towards the desired behaviour.

Controller generation (in some sources controller synthesis or control) is a process,
such that from the specification of a plant and a set of desired properties of the system,
a controller is derived automatically (semi-automatically). A number of different
objectives are pursued in controller generation, e.g.:

5

i
i

i
i

i
i

i
i

1. I

• In least restrictive control for safety and liveness it is required that all trajectories of
the system satisfy safety and liveness properties and at the same time allow as
many inputs as possible at each state [Lygeros et al., 1998].

• In optimal control, desired behaviour should be reached while minimising a given
cost function.

• In hierarchical control, the control task is decomposed into a self-contained hier-
archically organised functional layers in such a way that the resulting controller
is able to achieve desired goals.

• In distributed control, the control tasks are distributed over different components
in order to efficiently solve complex problems separating them to sub-problems
that are solved by (possibly specialised) components.

For more information about controllers generation see Polderman and Willems
[1998], Tomlin et al. [2000], Julius [2005].

Scheduling Some control problems can be reduced to scheduling problems, where
scheduling is defined as the process of assigning tasks to a set of resources. Usually,
scheduling problems are less difficult than controller generation, and feasible solutions
are easier to design. Abstraction of controller generation to scheduling is common in
modern production and chemical industries. Successful application of formal methods
for scheduling of such systems was demonstrated by the AMETIST1 project.

1.2.4 Testing of hybrid systems models

Testing is one of the techniques to asses the quality and correctness of systems. The
system under test (SUT) is fed input data and output data is monitored to check its
correctness. Models of hybrid systems contain descriptions of the system behaviour,
and therefore can be used for tests generation. This is relatively new research for
hybrid systems [Zhao et al., 2003]. Berkenkötter and Kirner [2005] gives an overview
of available testing techniques for real-time and hybrid systems. More results on
testing of timed systems is available in Larsen et al. [2003], Briones and Brinksma
[2004, 2005]. A nice introduction to general model-based testing techniques is Broy
et al. [2005].

1.3 Main results

In this dissertation we contribute to several areas of hybrid systems research.

Modelling of hybrid systems. In Chapter 3 we survey principal characteristics of
hybrid systems and classifications based on these characteristics. We derive a
classification scheme from the survey and apply it to a list of major frameworks
for modelling and analysis of hybrid systems.

1AMETIST, IST-2001-35304, http://ametist.cs.utwente.nl.

6

http://ametist.cs.utwente.nl

i
i

i
i

i
i

i
i

1.4. O   

In Chapter 5 we introduce Behavioural Hybrid Process Calculus, a framework
for modelling and analysis of hybrid systems that combines process algebraic
theory and the behavioural approach to dynamical systems.

Analysis of hybrid systems. In Chapter 4 we propose a technique for stability esti-
mation of hybrid automata.

In Chapter 7 we propose a technique for simulation of Behavioural Hybrid
Process Calculus.

1.4 Outline of the dissertation

In this thesis we pursue several goals. We demarcate the hybrid systems realm by il-
lustrating them by examples containing hybrid phenomena and formalisms designed
to handle it. Hybrid systems combine two worlds. It does not come as a surprise
then that formalisms designed to handle hybrid phenomena usually are derived from
continuous or discrete formalisms by augmenting them to certain extent with comple-
mentary elements from these adverse worlds. We will follow this trend even further
by insisting that research of hybrid systems should be carried out in cooperation by
the representatives of these worlds. We illustrate it by proposing elegant and decep-
tively simple technique for stability estimation of hybrid automata. This experience,
together with the analysis of other formalisms shows that an approach with good
theoretical foundations, uniform treatment of continuous and discrete behaviours and
well defined compositionality is favourable. We therefore propose the Behavioural
Hybrid Process Calculus (BHPC) that conforms to these requirements. Furthermore,
we survey hybrid systems’ simulation techniques and propose a set of procedures for
BHPC simulation.

In the remaining part of this section we summarise our motivation and contribution
for each chapter of the thesis.

Hybrid phenomena emerges in diverse ways and in various systems. There is no
commonly accepted formal definition of hybrid systems. We withhold from giving
one too. Instead, we informally introduce hybrid systems as a fusion of discrete and
continuous worlds that retain continuous and discrete characteristics while attaining
new properties arising from interaction of these two worlds. We illustrate diversity
of hybrid systems in Chapter 2 by revealing a panorama of systems of different size
and complexity that manifest hybrid phenomena. Only a small corner of the hybrid
world is touched, but even such contact reveals diversity and dynamism of the hybrid
systems’ universe.

In Chapter 3 we examine some of the major existing frameworks and formalisms for
the specification and analysis of hybrid systems. We explore essential characteristics
of models and frameworks for hybrid systems, such as compositionality, incorporation
of continuous and discrete constituents, etc., and reveal shortcomings and advantages of
these approaches.

As we already mentioned, hybrid systems can be seen as some sort of amalgamation
that brings together computer science and control theory. Therefore we anticipate that
cooperation amongst these two areas should bring fruitful results. We assess these
expectation in Chapter 4 by applying techniques from computer science and control
theory in stability analysis for hybrid automata. We present an elegant and relatively

7

i
i

i
i

i
i

i
i

1. I

simple technique that not only provides an algorithm for stability estimation for a
certain class of automata, but also illustrates reuse of well known efficient techniques
from both areas. Furthermore, we believe that the results from Chapter 4 inspire some
analogue research, where properties of automata can be exploited.

Recent interest in embedded systems materialised in a multitude of models for the
specifications and analysis of hybrid systems. However, besides multiple advantages,
some of these frameworks suffer from drawbacks, or even lack essential features.

Hybrid systems combine continuous and discrete evolution, but to get adequate
representation of both worlds, the fusion should be evenly balanced w.r.t. constituent
elements, and should capture interaction between them. However, many formalisms
concentrate on the continuous part, while the discrete behaviour is relatively neglected.
That allows to utilise control theory techniques relatively easy, however, discrete
behaviour remains somewhere in the outskirts. The inverse situation surfaces in the
Φ-calculus, where only the environment is continuous.

Yet another immensely important quality of formalisms is compositionality. Any
encounter with the design and development of large, complex systems can be used as
an argument that it is at least impractical, if not futile, to engage in it without a divide
and conquer strategy. However, formally defined compositionality is missing in many
systems. The situation is better in the hybrid automata case, although, parallel compo-
sition is well-defined only for discrete actions. Hybrid process algebras provide good
facilities for compositional modelling of systems with many other modelling and anal-
ysis mechanisms present in process algebras. Unfortunately, strong bisimulation is not
a congruence in some of these process calculi, and it means that bisimilar components
(impossible to distinguish by just observing them) can not be substituted. Hybrid I/O
automata is a very nice and well developed model for hybrid systems, however, it lacks
mechanisms that are usually supplied with process algebras and is built-upon the so-
called directed or input/output communication paradigm that we find too restrictive and
not in accordance with out intuition. The same (directed communication paradigm)
applies for Hybrid χ. Hybrid behavioural automata nicely introduces the behavioural
approach [Polderman and Willems, 1998] into hybrid automata formalism, but it lacks
tools provided by process algebras, and treats continuous and discrete behaviours
completely differently. M and C provide a nice hierarchical view of sys-
tems, but they have rather inefficacious formalisations. Bond graphs and ModelicaTM

are strongly oriented towards simulation and are not suitable for theoretical exercises.
We propose the Behavioural Hybrid Process Calculus (BHPC) in Chapter 5. In this

formalism we take into account lessons learned from existing formalisms. We aim
at achieving balanced incorporation and uniform treatment of discrete and continu-
ous constituents, well defined and adequate treatment of their interaction, formally
defined compositionality and other issues. The resulting calculus combines classi-
cal process algebraic techniques [Milner, 1989, Hoare, 1985, Bergstra and Klop, 1984,
Bolognesi and Brinksma, 1987] and behavioural approach [Polderman and Willems,
1998]. It is a formalism with a convenient separation of concerns (discrete and continu-
ous behaviours can be separated syntactically), adequate compositionality facilities, i.e.,
generalised choice and parallel composition. Moreover, bisimulation is a congruence in
the calculus. In Chapter 6 we compare BHPC with other approaches.

Although the specification process itself provides already a lot of insight on static
characteristics of systems, at some moment further analysis techniques are employed

8

i
i

i
i

i
i

i
i

1.4. O   

to extract information about dynamic behaviour. Mathematical simulation is one of
such techniques. It is widely accepted in industry and academia, as one of the main
tools to analyse dynamic behaviour of diverse systems. There exists a number of
simulation techniques and tools that provide different levels of services and facilities.
In Chapter 7 we address different hybrid systems simulation techniques and major
problems arising in such a process, and some solutions to them. Moreover, we propose
a technique for simulation of Behavioural Hybrid Process Calculus (Chapter 5).

In this work we only touch a small part of hybrid systems universe. However,
even this encounter allows to envision prospective research tendencies. We address
potential research directions and conclude our work in Chapter 8.

9

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Oh, a sleeping drunkard
Up in Central Park,
And a lion-hunter
In the jungle dark,
And Chinese dentist,
And a British queen–
All fit together
In the same machine.
Nice, nice, very nice;
Nice, nice, very nice;
Nice, nice, very nice–
So many different people
In the same device.

Bokonon (Kurt Vonnegut, Jr.) 2
Bestiarium of hybrid systems

2.1 Introduction

In this chapter we present and comment on a set of examples of hybrid systems with
diverse properties. The aim is to illustrate the variety of hybrid phenomena and the
occurrence of these in different applications. We will return to some of the examples
in the subsequent chapters.

The analysis of examples gives a better intuition on hybrid phenomena and the
complications it carries. Moreover, the presented examples can be used not only as an
illustration of the variety of hybrid phenomena, but as a reference to a specific type
of hybrid systems and the literature where it is analysed. The list is not exhaustive as
only the illustrative examples were selected.

To introduce some examples we will use the hybrid automaton formalism. A hybrid
automaton [Alur et al., 1993, Henzinger, 1996] is one of the most popular approaches
to model and analyse hybrid systems. In this chapter we explain hybrid automata on
the bouncing ball (Section 2.2.1), thermostat (Section 2.2.2) and railroad gate control
(Section 2.2.5) examples. A formal definition of hybrid automaton is provided in
Section 3.3.6.

2.2 Examples of hybrid systems

Hybrid systems occur in different sizes and complexity. They range from small and
simple systems with few discrete states and simple continuous-time behaviour to
large and complex systems with complex non-linear behaviour and a big number of
discrete states. In our list we set off to illustrate a wide range of hybrid phenomena by
presenting examples of different complexity and types. Considering the diversity of
hybrid phenomena, it is not possible to illustrate all manifestations or list all interesting

11

i
i

i
i

i
i

i
i

2. B   

examples.
We start our list with a simple, but non-trivial example of the bouncing ball (Sec-

tion 2.2.1). Even such a small example warns against perils awaiting in the area of hy-
brid systems by exhibiting the Zeno behaviour [Johansson et al., 1999]. The thermostat
example (Section 2.2.2), even by being rather simple and small, illustrates somewhat
realistic heating control system. The fluid level control (Section 2.2.4) and the leaking
gas burner (Section 2.2.3) exemplify characteristic behaviour of wide classes of hybrid
systems in a relatively simple way. Important concepts of modularity and concurrency
are illustrated in the railroad gate control example (Section 2.2.5). The batch control
example (Section 2.2.6) presents an extensive group of the industry-relevant problems,
and recommends potential techniques to deal with them. In the mobile vehicles ex-
ample (Section 2.2.7) we subsume a wide range of large and complex hybrid systems,
and discuss potential approaches to handle them.

2.2.1 A bouncing ball

-
v := v0

h := h0

'

&

$

%
ḣ = v

v̇ = −g

h > 0
�

h = 0

v := −cv
.

.......
.......

.

Figure 2.1: A bouncing ball

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Velocity

time (sec)

Figure 2.2: Velocity v

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Altitude

time (sec)

h
e
i
g
h
t

m
e
t
e
r
s

Figure 2.3: Altitude h

A bouncing ball is a simple example of hybrid systems. It is a simplified model of
an elastic ball that is bouncing and losing a fraction of its energy with every bounce.
The altitude of the ball is h, v is a vertical speed, and c is a coefficient for the lost energy.
The ball moves according to the flow conditions

ḣ = v v̇ = −g

and at the bounce time the velocity is reassigned to −cv.
The hybrid automaton for the bouncing ball is depicted in Figure 2.1 and an exam-

ple of evolution (velocity and altitude) is presented in Figures 2.2 and 2.3, respectively.
The automaton in Figure 2.1 has only one location (or discrete state) with continuous

dynamics (or flow conditions) ḣ = v, v̇ := −g and invariant h > 0, where invariant
is a predicate which should hold while the systems stays in the location. Initial
state v := v0, h := h0 is provided by the arrow without a source location. An arrow
decorated by a guard h = 0 (in some cases, additional condition y 6 0 is added to
prevent repetetive switching while skiping continuous evolution) and an assignment
v := −cv denotes a switch (or discrete change of evolution) which can occur if the
guard is satisfied, and which alters the continuous state (defined by the assignment).
In this case the evolution starts from the initial state and evolves according to the flow

12

i
i

i
i

i
i

i
i

2.2. E   

conditions. When the height becomes 0, the transition is taken, and evolution starts
with reassigned velocity, and so on, so forth.

In both figures we see an example of Zeno behaviour [Johansson et al., 1999], when
switching between the modes becomes more and more frequent. In other words,
we get an infinite number of switches in a finite amount of time. Fortunately, the
behaviours converge, therefore a solution can be proposed (in this case 0 altitude and
0 velocity).

References The bouncing ball example is presented in Lygeros and Sastry [1999],
De Schutter and Heemels [2004], van der Schaft and Schumacher [2000, p.37–38] as
an example of hybrid systems. Several different versions of the bouncing ball are
presented and analysed in Johansson et al. [1999]

2.2.2 A thermostat

'

&

$

%

Off

d
dt l = −Kl

l > tempmin

'

&

$

%

On

d
dt l = K(h − l)

l 6 tempmax

-
init

l := l0

.
...........................

..........................
.........................

........................
.....................

.....

.................
.........~

on

l 6 tempon

.
...................

.........

.......................
....

..........................
..........................

............................

.............................} off
l > tempoff

Figure 2.4: A thermostat

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

22.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Temperature

Time

D
e
g
r
e
e
s

Figure 2.5: Change of the temperature

A thermostat is one of the best-known introductory examples of hybrid systems.
The room temperature is controlled by a thermostat, which continuously senses the
temperature and switches a heater on and off. The temperature changes are defined by
the ordinary differential equations. When the heater is off, the temperature decreases
according to the exponential function l(t) = θeKt, where t is time, l is the temperature
in the room, θ is the initial temperature, and K is a constant determined by the
room. When the heater is on, the temperature increases according to the function
l(t) = θe−Kt + h(1− e−Kt), where h is a constant that depends on the power of the heater.
The temperature should be maintained between tempmin and tempmax. Temperatures
tempon and tempoff are the minimal and maximal thresholds, when the heater can be
turned on and off, respectively.

A hybrid automaton based model of the thermostat is shown in Figure 2.4. The
system starts with the temperature l0 ∈

[
tempmin, tempmax

]
in location off. The hybrid

automaton consists of two location, Off and On, and the switches between them (on
and off). The temperature falls according equation d

dt l = −Kl, until it reaches the
interval

[
tempmin; tempon

]
. Then the guard on the switch decorated with action on

becomes enabled. The system can then switch to location On at any point of the
interval, and it must do so until the temperature l falls below tempmin. In location On

13

i
i

i
i

i
i

i
i

2. B   

the temperature increases according to equation d
dt l = K(h − l), until it reaches interval[

tempoff ; tempmax

]
. When the temperature becomes higher or equal to tempoff , the guard

on off is enabled and again, the transition is taken before temperature exceeds tempmax,
and so forth.

An example of evolution is depicted in Figure 2.5. The thermostat starts with
temperature 18 in location Off and immediatelly switches to location On, and then
evolves as defined above.

It is quite common for hybrid systems to show the cyclic behaviour as in the
thermostat example and almost cyclic behaviour as in the bouncing ball example.
Supervision of repetitive tasks is the most common application area of the hybrid
systems. This knowledge is not so important in modelling small examples of hybrid
systems, but it becomes very useful when solving scheduling problems for larger
systems, like the batch plant control discussed in Section 2.2.6.

References The thermostat example is widely used in the literature. A simple, clas-
sical thermostat, which is modelled by the two-states hybrid automaton is described
in Alur et al. [1995], Henzinger [1996], Lygeros and Sastry [1999]. In Henzinger et al.
[1997] several different versions of the thermostat are presented, and a profound anal-
ysis of different properties using HT is given. In Rönkkö and Ravn [1997b], the
hybrid actions approach is used to model a simple thermostat. An ACP-style process
algebra is used to specify a simple thermostat in Vereijken [1995]. In Jacobs [2000] a
thermostat is specified using coalgebras with monoid actions. A version of thermostat
is presented in van der Schaft and Schumacher [2000, p.38–40]. A BHPC specification
of the thermostat is available in Brinksma and Krilavičius [2005] and Example 5.8.2.

2.2.3 A leaking gas burner

'

&

$

%

On
ẋ = 1
ẏ = 1
ż = 1
x 6 1

'

&

$

%

Off
ẋ = 1
ẏ = 1
ż = 0

-
x, y, z := 0

init
.

...........................

..........................
.........................

........................
.....................

.....

.................
..........~

off

x := 0

.
.................

..........

.....................
.....

.........................
.........................

..........................

...........................}

on
x > 30

x := 0

Figure 2.6: A leaking gas burner
Figure 2.7: Evolution of the gas
burner

A leaking gas burner is a simple example of a hybrid system. It describes a valve,
which controls a gas supply to a burner. The following properties are checked.

• A continuous leaking period cannot extend beyond a specified number of time
units.

14

i
i

i
i

i
i

i
i

2.2. E   

• The accumulated time of leakage is at most some specified amount of time in
any interval of at least 60 seconds.

The goal is to check whether over a prolonged time period the cumulative leaking
time constitutes only a certain percentage of the overall evolution time.

Such system can be modelled by a two-states hybrid automaton, as depicted in
Figure 2.6 from Alur et al. [1995]. In this model the leaking time is 1 time unit and the
gas burner will not leak for 30 time units after a leakage has been stopped. The goal
is to show that the accumulated time of leakage is at most one twentieth of the time in
any interval of at least 60 time units. The clock x records the time spent in the current
location, the integrator z records the cumulative leakage time and the clock y records
total elapsed time. An example of such evolution is depicted in Figure 2.7, where the
cumulative leaking time is represented by the slowly rising line, the fast rising line
represents time flow in the states and the resets indicate switching moments.

At the first glance this system does not seem so much different from the ther-
mostat (Section 2.2.2). But the similarity is deceptive. The system is enlarged with
an important summand, which can be considered as an implicit memory. In this
example, an evolution of the system depends not only on the locations, but on its pre-
vious behaviour. In contrast, in the thermostat (Section 2.2.2) example all necessary
information is encoded in locations.

References The leaking gas burner is a popular example and can be encountered in
many papers. In Alur et al. [1995], Henzinger and Rusu [1998] a leaking gas burner
with leaking and non-leaking periods is analysed. Lamport [1993] uses a temporal
logic of actions to model a gas burner.

2.2.4 A fluid level controller

'

&

$

%
SentOn

ẋ = 1
ẏ = −2
x 6 2

'

&

$

%
Off

ẋ = 1
ẏ = −2
y > 5

'

&

$

%
On

ẋ = 1
ẏ = 1

y 6 10

'

&

$

%
SentOff

ẋ = 1
ẏ = 1
x 6 2

�
y = 5

x := 0

-
y = 10

x := 0

6x = 2
?

x = 2

�����)

y := 1

Figure 2.8: A fluid level controller Figure 2.9: Change of the fluid level

There are several examples of hybrid systems describing different varieties of fluid
level controller. The examples range from a simple fluid level control in a tank to a
fluid level control in a complex network of tanks with several valves and pumps. The
main goal in the examples is to maintain the required fluid level in several vessels

15

i
i

i
i

i
i

i
i

2. B   

by changing the fluid input and draining speed, opening and closing (starting and
stopping) the valves and the pumps (with potentially delayed reaction of the pumps
and/or valves). One of the most popular versions of the fluid level control examples
is presented in [Alur et al., 1995] and is described in the following way.

The fluid level in a tank is controlled through a monitor, which continuously senses
the fluid level and turns a pump on and off. The fluid level changes as a piecewise
linear function over time. When the pump is off, the fluid level, denoted by a variable
y, falls by 2 units per second; when the pump is on, the fluid level rises by 1 units
per second. It is required to keep the fluid level between 1 and 12 units. The pump
receives a signal from a monitor delayed by 2 time units. Thus, the signals to turn the
pump on and off should be sent before the threshold is reached. The corresponding
hybrid automaton model is presented in Figure 2.8, and an example of fluid level
fluctuation is depicted in Figure 2.9. The hybrid automaton has four locations

• On - the pump is on,

• SentOff - the pump is on, but a signal to stop the pump is sent,

• Off - the pump is off,

• SentOn - the pump is off, but a signal to start the pump is sent.

The example can be thought-of as an extension of the thermostat (Section 2.2.2) with
delays. In fact, adding a location to model a delay is standard practice in hybrid (and
timed) systems’ modelling.

References The fluid level control examples are found in many papers in several
flavours: the tanks are connected in different ways, a control of volume of fluid can be
accomplished differently (opening and closing valves of outlets, switching on and off
the pumps), etc.

The simplest version of the fluid level control is a one-tank system, the one we
described in the previous section. It is described in Alur et al. [1995], De Schutter and
Heemels [2004]. An analogue version is presented in van der Schaft and Schumacher
[2000, p.38–41].

A similar example is given in Henzinger et al. [1993], but fluid flows in at a constant
speed, and an output valve can be closed and opened, when it is required. The valve
reacts without delays.

In Rönkkö and Ravn [1997a] hybrid actions are used to model a one tank system,
where leaking starts only when the maximum fluid level is reached, but restrictions
for filling are introduced. A similar system, where a pump and an outlet valve can be
turned on and off is described in Heymann et al. [1997].

One tank system with several fillers is specified in Rönkkö and Ravn [1997a] using
hybrid actions. A more complex example with one tank is given in Cuzzola and Morari
[2001], where two outlets are activated, when the fluid level reaches the preset limits
and one outlet provides a constant output all the time. Input flow varies between 0
and umax.

Another class of the fluid level control examples is oriented to solving scheduling
problems. For several tanks only one filler is available, and the objective is to optimise
its use. In Heymann et al. [1997], Lygeros and Sastry [1999], Simić et al. [2000], De

16

i
i

i
i

i
i

i
i

2.2. E   

Schutter and Heemels [2004] a particular fluid level in two tanks should be maintained.
In Labinaz et al. [1996] there are three tanks, input and output flows are constant.

To make it even more complicated, tanks can be interconnected. In Kowalewski
et al. [1999] two interconnected tanks, which are placed at different height, are analysed.
A pump, a valve between tanks and an output valve can be switched on and off. The
dynamics of such system are far from trivial. The required fluid level should be
maintained in the three interconnected tanks (from the first tank fluid flows to the
second, from the second to the third, and from the third it flows out) in Raisch et al.
[1999]. The first and the third tanks can be filled by independently turning the first
and the third pumps on.

2.2.5 Railroad gate control

�� ��TRAIN

'
&

$
%

Past

−50 6 ẋ 6 −30

x > −100

'
&

$
%

Far

−50 6 ẋ 6 −40

x > 1000

?
x 6 5000 '

&
$
%

Near

−50 6 ẋ 6 −30

x > 0

-

x = 1000

approach

���
�����

x = 0

H
HHH

HHHY
exitx = −100

x :∈ [1900, 4900]

�� ��CONTROLLER'
&

$
%

Idle

ż = 1

u̇ = 0

�
�	

'
&

$
%

ż = 1

u̇ = 0

z 6 u
.

.................
.........

.................
......

...................
..

..
.......
..........
............
...............

..................

.....................

.......................

..........................�

exit

'
&

$
%

ż = 1

u̇ = 0

z 6 u
.

................
..........

.................
......

.................
...

..
.........
............
...............

..................

.....................

.........................

............................�

approach

.
................

..........

................
.......

.................
...

.................
.........

............
...............

...................

......................

.........................

............................]
exit

�
approach

B
B

B
B

B
BBM

raiseB
B
B
B
BN

exit

z := 0
�
�
�
�
��

lower

�
�

�
�

�
��

approach

z := 0

�� ��GATE

'
&

$
%

MoveUp

ẏ = 9

y 6 90..........................
.....................

..................
...............

............
....................
......

...............
..................

.....................
.........................:

raise

'
&

$
%

Open

ẏ = 0

y = 90

PPPq

.
.....................

..................
...............

............
.........
...........................

...............
..................

.....................
.........................y

raise

'
&

$
%

MoveDown
ẏ = −9
y > 0..........................

.....................
..................

...............
............

....................

......
...............

..................
.....................

.........................:

raise

'
&

$
%

Closed
ẏ = 0

y = 0
.....................

..................
...............

............
.........
...........................

...............
..................

.....................
.........................ylower

-
y = 90

-
y = 0

6raise
?

lower
����������)

lower PPPPPPPPPPi raise

Figure 2.10: Train, gate and controller automata

A railroad gate control models a train on a circular track with a controlled gate. A
controller issues open and close depending on information about the train movement.
A version from Henzinger [1996] is presented below.

The initial speed of the train is between 40 and 50 metres per second. At the
distance, which is represented by a variable x, of 1000 metres from the gate, the train
issues an approach event and may slow down to 30 metres per second. At the distance
of 100 metres past the gate it issues an exit event. The circular track is between 2
and 5 kilometres long. When an approach event is received, the controller issues a

17

i
i

i
i

i
i

i
i

2. B   

lower event with a u seconds delay, and when an exit event is received, the controller
issues a raise event within u seconds. The elapsed time is represented by a variable
z. Initially the gate is open. A position of the gate, which is represented by a variable
y, is measured in degrees, and initially is 90. When a lower event is received, the gate
starts closing at the rate of 9 degrees per second, and when raise event is received,
the gate starts opening at the same rate. The purpose of the model is to find u - the
reaction delay. Hybrid automata of the train, the gate and the controller are presented
in Figure 2.10. The specification is separated into three parts, which model the gate,
the train and the controller. These three components communicate by sending and
receiving messages, which correspond to actions. Therefore the train announces about
it’s arrival by issuing approach event, and the controller responds to it by changing
it’s state.

References An application of HT and hybrid automaton for the rail-road gate
control is presented in Henzinger [1996], Henzinger et al. [1995, 1997]. Several differ-
ent approaches are used: with a simplified differential inclusion and using a timed
automaton in Puri and Varaiya [1995]. One more version of the railroad gate control
is presented in van der Schaft and Schumacher [2000, p.51–52].

2.2.6 Batch plant control

���� ��� �����	
 �� ���	 �������
 ����	� ����� �������� ��� �����	�� �	�
�
��� �������� �����	����
 ��������� ������
 ���� ���� �� 	�
����
��� �
 �����

���
�	� � ������ ����� ��
 �� ���
� �
 ������ �

��� ����!�����
 ������� ��� ����� �������� ��	 ���
 �
��
	����� �
��	��"
����� �
� ��
� �
����	��
� �����	 ���� ���
 ���
��!�� ��� #���� ���	 ������� �	
��������� ��$%�&
 �'(�)
 �*�+
 �*,�)
 *���) � ��	� ��� 	�
���	�	 ���������� ����� �������� �	 ��������� �-.��+ �

/
 ���	 	�����
 #� ���� � 	����!�����
 �� ��� ���������� 	�	��� �	�
� �����
��������� ���	 	����!�����
 �	 ��� ��	�� ����� ��� ��� 	��	�0��
� 1�����"
��
���2 	����!�����
	 �
 3��
�	 �
� (������ '��	�
 #� �������	� ��� ����"
������ 	�	��� �
�� ��� �����#�
� ��		 ������4 	��	�	���	5 ��� ������
 ��
� 6

��
� 7
 ��� ��
��
	��
 ��	 ���		���
 �
� ��� ��
�������� 8�4�
 #� ���� ��� ������"
��� �����	�
�����
 ��� ���� �����
�
�� 8���
 ���������� ��� ��	�������
 #� �	�
���
����
	 1	�
�2 �
� 1�������2 �� ����	����� ��� �����
������
 �� �
������
�
� ��������

 ��� �
 ���� ����� �	 �
�� � 	�
����
������
 �
 �����
 ���
�	 ���
����� ���������

9:; <;=>;?@ ��� ������ ������	 �	 �����#	5 ����� �������
� ��� ���
� ABCDEF GH
���� ��� ��
������� �� ��	��	 ��	 ����� I �
� �����
	 + ���� �
��	 �
 ��� ����"
���
 BJCDCKL � �����#���	
 �� �
������	 ����
� ���� 	���� ������	 �� 	�
��
�FMJDMN GH � ��� �����
����
 �� ��� �
�����
� I O + �
� ��� ����� I P + �� ���
���
	����
 �����	 �� �� �� ����
 �� ���	 ���������� ����
� +�

on
switch_off

waiting
h<=5 heater_off

h=5h:=0
off

'����� Q5 (�����

9=RS T@ U� �		��� ��
� 6 �	 !���� V�� �
� �����W� /� ��� ���
� XNJCKY ����
��� ��
������� �����	
 ��
� 6 #��� �� ����� �
	��
���� (�#����
 �� ��� FMJDMN GH
���
� �����	
 ���	 ���
	 ��� ����������� ��	 �����
 ����# 	��� ������
 �����

��� ����� DY �	 ��	���� �
� �� �� ��	�	 ���� Z #������ �����
�
� ��� XNJCKY ���
�
��� 	������
 �
 ��
� 6 #��� ������ 	���� �
� #� ����� ��� �������
 AG[CX�

9=RS \@ /
�������
 ��
� 7 �	 !����� ���

 ����� �	 � �����
����
 #����
 ��� 	�	"
��� �
� �
 ������
�� ����
�
� ��	 �� �� �
������� �� �����
��� � 	��� 	�����#

�� ��� 	�	���� ���	 �	 �
����� �� M]MN XNJCK� ��� �� ��
� 7 �	
 �̂ ����� ��� �
�
��
� 6 �	 ������� ���
� ������� ����� ����� �� �
 ������# �
 ��
� 7� ��
�� ��
����	 �� �� 6& ���� �
��	 �� ����
 ��
� 7
 ���	 �	 �4���		�� �
 ��� �
�����
� ��
��� XNJCKCKL �������

 ����� XNJCKY ���
� #����
 ���	 ������ ����� ���� �� �

������# 	�������
� (�#����
 ����� 6& ���� �
��	 ��
� 7 #��� ����� ��� M]_D`
�������
 #���� �� �
������	 �� ��� ���
� M]_D`a �

+

Figure 2.11: Heater

empty

drain1 drain1

full dangerheater_off
t1:=0

t1>4

gel

solid

������ �� �	
� �

drain1

full

overflow
draining
t2<=10

emer_drain

t2:=0

emptydrain1

drain1

empty2

������
� �	
� �

��� ���������� ��� ��� ������� �� �	�� 	 ���� �� �!� ���� �
 �"� #�
$%�
���& '� �� �����
� ��
��& '
���	!!�(�"� #�
%�
��� �� ��!!)�
#���
�
� *��
��%%�
!� �� *��	�� %��
(�"�#" �� �
%�#	��% *� �"� +,- ./ 	!)�
#���
0 ���
�&

malnormal fail

������ 1� 2�
%�
���

3����4�� 567�6� 7�� ���������� 8�
#� �� !��� �� ���� ��� �%�! �) �"���	���	��� ����� 	� �%�!	� 	� �����*!� �� %�9
� �"� #�
%�
��� 	
% ����������� �
��%� 	� ��� %����
#� ��*����� & :"�!� �"� #�
%�
��� ;��� �
%�#	����"��"�� �� �� *����
 ��
��(�"� #�
%�
��� ����� 	�)�!!���� ��� �"� �
���	!

1

Figure 2.12: Container T1

empty

drain1 drain1

full dangerheater_off
t1:=0

t1>4

gel

solid

������ �� �	
� �

drain1

full

overflow
draining
t2<=10

emer_drain

t2:=0

emptydrain1

drain1

empty2

������
� �	
� �

��� ���������� ��� ��� ������� �� �	�� 	 ���� �� �!� ���� �
 �"� #�
$%�
���& '� �� �����
� ��
��& '
���	!!�(�"� #�
%�
��� �� ��!!)�
#���
�
� *��
��%%�
!� �� *��	�� %��
(�"�#" �� �
%�#	��% *� �"� +,- ./ 	!)�
#���
0 ���
�&

malnormal fail

������ 1� 2�
%�
���

3����4�� 567�6� 7�� ���������� 8�
#� �� !��� �� ���� ��� �%�! �) �"���	���	��� ����� 	� �%�!	� 	� �����*!� �� %�9
� �"� #�
%�
��� 	
% ����������� �
��%� 	� ��� %����
#� ��*����� & :"�!� �"� #�
%�
��� ;��� �
%�#	����"��"�� �� �� *����
 ��
��(�"� #�
%�
��� ����� 	�)�!!���� ��� �"� �
���	!

1

Figure 2.13: Container T2

A large class of examples for hybrid systems describe Batch plant control of several
varieties. The general scenario is the following: there are several chemical substances,
and they should be mixed in specified proportions, following a specified order. The
temperature should be controlled all the time or only after mixing substances. In some
versions a mixing device is used, and it can be turned on and off. If the resulting
chemical substance is ready, it should be removed from the production vessel. When a
system of several vessels is used, vessels should be ready to receive the product when
it is ready.

18

i
i

i
i

i
i

i
i

2.2. E   

2

Figure 1: P/I diagram of the plantFigure 2.14: Piping and instrumentation diagram of the plant

Sensors for temperature, fluid level, concentration and other measurements are
used. Delays for the actuators and the sensors can be introduced in more complicated
versions.

Such systems are quite complicated, because it is necessary to pursue several

19

i
i

i
i

i
i

i
i

2. B   

different objectives. In the literature, examples vary quite a lot, and sometimes case
studies of production environments are presented.

We illustrate such a type of system by an experimental batch control plant presented
in Kowalewski [1998] which was used as a case study in the VHS project1. Different
approaches to control the plant are presented in Kowalewski et al. [2001], Bemporad
et al. [2001], Huuck et al. [2001], Mader et al. [2001], Niebert and Yovine [2001].

The plant is depicted by so-called P/I (piping and instrumentation diagram) in Fig-
ure 2.14. It is originally designed as an educational apparatus for student exercises. It
“produces” batches of diluted salt solution from a concentrated salt solution (container
B1) and water (container B2). They are mixed in container B3 to obtain the diluted
solution, which is transported to container B4 and then to container B5. In B5 an evap-
oration process is started. The evaporated water is condensed in K1 and then goes to
container B6, where it is cooled and pumped to B2. The remaining hot, concentrated
salt solution from B5 is transported back to B7, cooled down and pumped back to B1.

The reader is encouraged to consult Kowalewski et al. [2001], Bemporad et al.
[2001], Huuck et al. [2001], Mader et al. [2001], Niebert and Yovine [2001] for different
modelling approaches. Here we illustrate one of the possible ways to model the
containers and heaters. In Figures 2.11, 2.12 and 2.13 automata of the heater and two
containers from Huuck et al. [2001] are presented, respectively. These automata are
used to model the condenser failure. Only an evaporator component is modelled to
analyse the system’s reaction to failure, and these three automata form only a part
of it. The heater, after receiving switch_off resets clock h (a clock is a special type of
continuous variable, which can be defined like ḣ = 1) and waits in the location waiting
for 5 time units, then sends heater_off and switches to the location off. Container T1
(which corresponds to B5 in Figure 2.14) gets emptied immediately after receiving
event drain1. Event gel indicates that the solution in the container became solid.
If container T2 (B7 in Figure 2.14) is not empty, when T1 is drained, it overflows.
Therefore action emer_drain should be enforced timely.

Even by examining a small part of bigger system it is easy to see that modular
approach is indispensable. Moreover, the components can be reused in other models
of the same or similar systems.

References A version of the chemical reaction is modelled and analysed in Anderson
et al. [1993]. In this example a special attention is drawn to the analysis of the safety
requirements.

In Jacobs [2000] chemical reactions are specified and analysed using coalgebras
with monoid actions, which capture the influence of time on the state space. A
simple reactor for waste water treatment is modelled and analysed in Williams and
Newell [1997]. In Philippe et al. [2000] the Pontryagin’s Maximum Principle is used
to minimise the overall operating time of the system, which is modelled using the
hybrid automaton. An evaporator vessel, as a part of a chemical reaction is modelled
in Mosterman [1999]. A complex batch evaporator is analysed in Kowalewski and
Stursberg [1998].

20

i
i

i
i

i
i

i
i

2.2. E   

REGULATION

LAYER

PHYSICAL
LAYER

RAW SENSOR DATA

LINK LAYER

COORDINATION

 LAYER

MANEUVER REQUEST FLAGS & AGGREGATE
 SENSOR DATA

CONTROL
 INPUT

AGGREGATE TRAFFIC
 FLOW DATA

DESIRED SPEED,
LANE CHANGE
PROPORTIONS,
PLATOON SIZE

(plant)

NETWORK LAYER

HIGHWAY TRAVEL TIMESSUGGESTED ROUTE

Roadside

Vehicle

���������	
��
����	��������

���������������� !"�#$%&�'��"

(��
��
���))�)��*)+���,��)�-�,������

./��
��
�0���

.1��2�
���0��)

.�������)+���-��-�)

(��
��
���))�)��*)��
������-0�-�)������
,��)

.3���*�)���

.�������)+���)+�����)

.���*����,��
�)+���4��4�)5,�*,)

.
�)��*)��
������-0�-��������*,����)

(��
����6�-�)

.7��-��*�-�4)89����+��*�-�9���4�������
�
�	

.������9�����,����*�-�)�*��
���
������-�5*��
���
��
)��
����),��-5*��
���
�
����9�����25-�)��
-���:;�-����8

<

Figure 2.15: AHS control hierarchy

2.2.7 Mobile vehicles

Examples of mobile vehicles control range from simple models of automatic or semi-
automatic movement to complex multi-vehicle movement coordination systems. Ve-
hicles in examples range from personal cars to air-planes and submarines. Control
objectives vary and in some cases are conflicting. Often such systems are modelled
in a hierarchical way, i.e., there are several principal control centres, which provide
recommendations for the agents. In addition, the agents can interact with each other
without the mediation of these centres.

The following types of systems belong to the mobile vehicles class.

• Automated Highway Systems (AHS).

• Air Traffic Management Systems (ATM), Flight Vehicle Management Systems
(FVMS), Autonomous Flight Vehicles.

• Sea Traffic Management Systems (STMS), Autonomous Underwater Vehicles.

1ESPRIT-LTR Project 26270 VHS (Verification of Hybrid systems), http://www-verimag.imag.fr/VHS/.

21

http://www-verimag.imag.fr/VHS/

i
i

i
i

i
i

i
i

2. B   

• Mobile Robots’ movement coordination systems.

Most of such systems have the following configuration and functionality:

• An autonomous or semi-autonomous vehicle, with certain requirements:

◦ Movement of a single vehicle, according to the comfort and physical re-
quirements, safe and comfortable manoeuvering.

◦ Movement of a single vehicle, following an optimal route, avoiding obsta-
cles.

◦ Movement in a group of vehicles, avoiding collisions, joining and leaving
a group.

◦ Communication with other vehicles (negotiations, etc.) and control cen-
tre(s), responding to it’s commands and warnings.

• A movement coordination centre tasks are:

◦ Traffic control.

◦ Routeing vehicles.

◦ Vehicles “handing-on/off” amongst the control centres.

◦ Issuing diverse warnings.

Simple models of mobile vehicles are presented in Alur et al. [2001], Lygeros et al.
[1997]. Alur et al. [1999], Koo et al. [2001], Lynch [1996], Lygeros and Sastry [1999]
add more complexity and elaboration to the examples. The examples from Lygeros
et al. [1999], Tomlin et al. [1998], Branicky et al. [2000] subsume simpler problems and
examples.

Entry
lane:=1

HIGHWAY

OFF

Exit
lane:=0

Mode

LEADER

Lane Change Left lane:=lane+1

Lane Change Right lane := lane-1

FOLLOWER

Mode

Split

Join

����������	
����	����
����������
��

��
�����	����������
��	
�
������
��
��������������

��

�����������

�		�	

��
�����
���
���
�

�	�
������������	�
��
���
���	
����
��
����
�����
������ �����	!	���	��!��
���!

�����
�	

���
����	�

�����"�����
����
�
����������������	#

�������
���
�������	�
��	
���

���
�	�

�
���$�!%���&����
�����!��
���!����
��
���
��
������

�������
��

'()(*(+,(-

./01�����2����!�# $�����
��	
�	�����
��	� ��
%���	
�

���
�&# 3444567897:;<=89=8>?;=@7;<:
A=8;6=B#�
���� CD#�
�E#���/FGHEIJ#/FFC�

.E0�K�	���	������#���K	L
���#���M���������"��
$N����O�N��
����������������������
����	!	����
��!����
���P
�K	
��!%������
����&# N�
��Q���R�S ON� 1QQ FJ J#O�	������
�N���	�
�����
�������	#R�����	��!
������
����#S��K���!#/FFJ�

.C0�������L
�%
��#T
��M!���
	#�������K����	��!#$������
��
���!%���

���
����O2��
�	�	���!&#��UVW6<XYV9;Z@933#1����	�K��	#[
��\
��#�������
��#�������K����	��!#]�	�#���%��FFF��M���#���/̂ Ĥ/FI���������2�����#/FFG�

.�0T
��M!���
	#�������L
�%
��#�������K����	��!#$2���_���!%���

���
����	�
����
���������
��	&#
3444567897:;<=89=8>?;=@7;<:A=8;6=B#�
���C#�
��#���GEEHGCF#/FFD�

G

Figure 2.16: Discrete states of an AHS vehicle

We do not provide models of mobile vehicle systems here, because they are usu-
ally very complex and big. However, we illustrate the complexity of such systems
by providing Figures 2.15 and 2.16 from Lygeros and Sastry [1999], which illustrate
Automated Highway System hierarchy and a discrete abstraction of an AHS vehicle,
respectively.

22

i
i

i
i

i
i

i
i

2.3. C

2.3 Conclusions

A list of hybrid systems’ examples was presented in this chapter. The list is by no
means complete, as only illustrative examples were included.

The presented examples demonstrate the diversity of the hybrid systems world.
The systems range from small and deceptively simple to large and complex systems.
However, even small examples (e.g., the bouncing ball example, Section 2.2.1) contain
surprises, like Zeno phenomena.

Moreover, we used the hybrid automaton formalism (Section 3.3.6) to present some
of the examples.

The presented examples show that even small systems corresponding to somewhat
realistic systems can be successfully modelled and discussed. For larger systems a
“divide and conquer” approach helps a lot.

A nice selection of various examples of hybrid systems is available in Lygeros and
Sastry [1999], van der Schaft and Schumacher [2000] and De Schutter and Heemels
[2004]. Good sources for examples are the proceedings of International Hybrid Systems
Workshops [Grossman et al., 1993, Antsaklis et al., 1995, Alur et al., 1996b, Antsaklis
et al., 1997, 1999] and the proceedings of International Workshops on Hybrid Systems:
Computation and Control [Henzinger and Sastry, 1998, Vaandrager and van Schuppen,
1999, Lynch and Krogh, 2000, Benedetto and Sangiovanni-Vincentelli, 2001, Tomlin
and Greenstreet, 2002, Maler and Pnueli, 2003, Alur and Pappas, 2004].

23

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

There was a red-haired man who had no eyes or
ears. Neither did he have any hair, so he was called
red-haired theoretically.
He couldn’t speak, since he didn’t have a mouth.
Neither did he have a nose.
He didn’t even have any arms or legs. He had no
stomach and he had no back and he had no spine
and he had no innards whatsoever. He had nothing
at all! Therefore there’s no knowing whom we are
even talking about.
In fact it’s better that we don’t say any more about
him.

Daniil Kharms 3
Overview of models for hybrid systems

3.1 Introduction

The high interest in hybrid systems and control theory communities materialised into
diverse hybrid formalisms. A variety of hybrid phenomena and differences between
communities have led to multiple formalisms, which are suitable for different tasks
and tastes. Considering that we are contributing to this multitude, we survey some of
the major approaches. The list is not exhaustive, therefore we encourage an interested
reader to consult the proceedings of International Hybrid Systems Workshops [Grossman
et al., 1993, Antsaklis et al., 1995, Alur et al., 1996b, Antsaklis et al., 1997, 1999] and the
proceedings of International Workshops on Hybrid Systems: Computation and Control [Hen-
zinger and Sastry, 1998, Vaandrager and van Schuppen, 1999, Lynch and Krogh, 2000,
Benedetto and Sangiovanni-Vincentelli, 2001, Tomlin and Greenstreet, 2002, Maler and
Pnueli, 2003, Alur and Pappas, 2004] for more information. Furthermore, our inten-
tion is not to provide detailed analysis and description of available hybrid systems’
formalisms, but rather to illustrate the main characteristics and features of different
approaches.

We do not consider probabilistic and stochastic aspects of hybrid systems in this
dissertation, and consequently, we do not present or analyse hybrid probabilistic and
hybrid stochastic formalisms.

3.2 Classification of hybrid systems

Classifying diverse phenomena is one of the principal occupations of scientists. There-
fore it does not come as a surprise that several attempts were made to classify hybrid
systems. Different authors have chosen diverse aspects of hybrid systems as a base
for their classification. Diverse properties were emphasised based on the potential use

25

i
i

i
i

i
i

i
i

3. O     

Category Explanation

Autonomous switching
Flow conditions change on hitting specified region
border

Autonomous jump (reset)
Continuous state changes on hitting specified region
border

Controlled switching
Flow conditions change in response to a control
command

Controlled jump (reset)
Continuous state changes in response to a control
command

Table 3.1: Classification of hybrid systems by Branicky et al. [1994]

Category Subcategory Explanation

Sampling Continuous Value of the continuous state is assumed to
be known and available all the time

Regular Value of the continuous state is evaluated at
some predetermined, fixed sampling period

Dynamics Linear Dynamics are defined by the linear diff.
equations

Nonlinear Dynamics are defined by the nonlinear diff.
equations

Determinism
(Continuous
dynamics)

Deterministic The evolution of systems is a uniquely
determined by the current state and inputs

Nondeterminis-
tic

The evolution of systems is not determined
uniquely by the current state and inputs

Determinism
(Discrete
dynamics)

Deterministic Each state is mapped to a single next state
Nondeterminis-
tic

State is mapped to a set of states

Control
action

Continuous Continuous control functions with
continuous domain and range

Discrete Function with a discrete range and a
continuous or discrete domain

Combined Combination of discrete and continuous
control

Specifications
Continuous Specifications are based on the continuous

time behaviour and/or variables

Discrete Specifications are based on the discrete event
behaviour and/or variables

Combined Specifications are based on combination of
the continuous and discrete variables

Table 3.2: Classification of hybrid systems by Labinaz et al. [1996]

of formalisms. Here we summarise classifications proposed in Branicky et al. [1994],
Labinaz et al. [1996], Mosterman [1999].

26

i
i

i
i

i
i

i
i

3.2. C   

Category Type Explanation

Events Time Events are generated at predetermined times

State
Events occur because system crosses some
thresholds, the time of their occurrence is not
known a priori - they need to be detected

Simulation
model

Dynamical
blocks

Blocks of sorted and solved equation may
simply appear or disappear (vehicle entering or
leaving highway), and, can be dynamically
added/removed

Changeable
continuous
dynamics

In some cases equations can be replaced by
others, changing computational causality, and
the system of equations may have to be sorted
again

Constraint
changes

In other cases, algebraic constraints amongst
state variables may become active and the
system of equations needs to be solved again
(the rod making contact to the floor)

Re-initialisation Explicit
Change explicitly specified by user by a new
initial state

Integrated
The system of equations may have to be
integrated to derive physically consistent initial
values for a new mode. This ensures
conservation of the thermodynamic extensity
holds

Event iteration Invariant
State vector is invariant across the entire
iteration

Updated
State vector is updated after every iteration step

Chattering Fast switching amongst several modes

Dirac pulses
Non-continuous changes for continuous
variables; if their magnitudes are numerically
approximated, comparison maybe affected by
non-Dirac type variables

Table 3.3: Classification of hybrid simulation phenomena by Mosterman [1999]

Branicky et al. [1994] considers causality of flow conditions and switches. The
proposed classification is presented in Table 3.1. Two types of stimuli are singled
out: external and internal. The changes induced by the internal stimuli are called
autonomous, and the changes generated by the external stimuli are called controlled.
In the table flow conditions denote the continuous evolution, e.g., it may be a vector
field or a set of trajectories. The proposed classification groups hybrid systems to
four classes. Hybrid systems with autonomous switching change the flow conditions
by hitting a border of the specified region, where the region is a part of state space,
defined by, e.g., the set of inequalities. Autonomous jump defines the discrete change
of the state, which occurs, when the specified region’s border is reached. Controlled

27

i
i

i
i

i
i

i
i

3. O     

Samp-
ling

Cont.
dynamics

Determinism
Formalism Cont.

dyn.
Discr.
dyn.

Switching Resets

PWA both linear deta det
auto-
nomous n.a.

MLD both linear det det both n.a.
ECL both linear det det both aut
MMPS both linear det det both n.a.

HA cont
non-
linear det nondet both both

HBA cont
non-
linear nondet nondet both both

BHPC cont
non-
linear nondet nondet both both

HyPA cont
non-
linear nondet nondet both both

ACPsrt
hs cont linear det nondet both both

Hybrid χ cont
non-
linear det nondet both both

Φ-calc. cont
non-
linear det nondet both both

HIOA cont
non-
linear nondet nondet both both

M cont
non-
linear nondet nondet both both

C cont
non-
linear nondet nondet both both

bond graphs cont
non-
linear det det both both

ModelicaTM cont
non-
linear det det both both

aThere exists an implicit non-determinism in PWA, when the border is a part of several regions. In such
a case it is either resolved by the implementation or reported as an error.

Table 3.4: Properties of hybrid systems

switching and jump occur in response to the external stimuli, or control commands.
Most of the hybrid systems are likely to exhibit different combinations of the

classes proposed in Table 3.1. System may manifest both autonomous switching and
autonomous jump behaviour, as in the bouncing ball example (Section 2.2.1) or have
a complex behaviour, where some components have controlled switching and jumps,
and others jump and/or switch autonomously, as in the railroad gate control example
(Section 2.2.5).

Meanwhile Labinaz et al. [1996] considers a finer view of properties of hybrid

28

i
i

i
i

i
i

i
i

3.2. C   

systems. The proposed classification, with some notions adapted for consistency
reasons, is presented in Table 3.2. We give supplementary comments to the notions
used in the table.

Sampling defines the availability of continuous state values.

• Regular: measurements are taken based on some predetermined, fixed sam-
pling period.
• Continuous: measurements are available (and known) at all times.
• Both: regular and continuous sampling modes are supported.

Continuous dynamics can be classified as linear or non-linear.

Determinism of continuous dynamics. A continuous dynamical system is determin-
istic if the system’s evolution is uniquely determined by the current state and
inputs. It is non-deterministic if there are several ways the system can evolve, i.e.,
the same input can potentially lead from the current state to one of several states.
In the process algebras’ case continuous behaviour is called non-deterministic, if
the time passage can resolve a choice.

Determinism of discrete dynamics. Discrete dynamics are called non-deterministic if
the same discrete action can potentially take the system from one state to one of
several different states.

Control actions can be purely continuous functions or discrete actions, or combina-
tion of both.

Specifications are usually combine continuous and discrete behaviour, but in some
cases they can be reduced to only continuous or discrete.

This classification is more appropriate for the ranking diverse modelling approaches,
but the notions of the complexity of continuous dynamics, the sampling type, the
manifestation of (non)determinism, and the control actions’ types are applicable for
hybrid systems too. For instance, in the thermostat example (Section 2.2.2) the sam-
pling is continuous, the continuous dynamics are linear, the continuous evolution
is deterministic, the discrete switching is deterministic w.r.t. the locations, but it is
non-deterministic in time, and the control actions are discrete.

Mosterman [1999] proposes a classification (Table 3.3) of hybrid systems simulation.
In Table 3.4 we classify formalisms presented in Sections 3.3.2–3.3.13 and Chapter 5

using a combination of schemas from Branicky et al. [1994] and Labinaz et al. [1996]
(Tables 3.1 and 3.2). The columns in the table correspond to the properties of hybrid
systems and the rows to the models.

Several comments are required to explain Table 3.4.

• In the general definition of complementarity systems non-linear behaviour is
allowed, but later restrictions are made to the linear behaviour in the linear
complementarity systems, therefore in Table 3.4 it is qualified as linear.

• In some formalisms as automata, transition systems, process algebras, hierarchi-
cal models, ModelicaTM, bond graphs, only continuous sampling is defined, but
regular sampling can be modelled in these formalisms, and most of the time in
some standardised way.

29

i
i

i
i

i
i

i
i

3. O     

• In BHPC and HyPA continuous dynamics are non-deterministic w.r.t. choice and
alternative composition, respectively.

• MLD’s are well posed (Section 3.3.3), if the continuous dynamics are determinis-
tic, therefore in Table 3.4 the continuous dynamics are qualified as deterministic.

• In ModelicaTM discrete control inputs should be adjusted to the modelling lan-
guage.

3.3 Hybrid formalisms

3.3.1 Grouping hybrid formalisms

Since hybrid systems is a meeting place for computer science and control theory com-
munities representatives, it is not surprising that different formalisms were devised to
handle hybrid phenomena. Additional diversity was added by the competing factions
in the communities itself. Respecting it we distinguish several origin-based groups.

Dynamical systems Hybrid dynamical systems are classical dynamical systems ex-
tended to handle hybrid phenomena. We present some of them in Sections 3.3.2–3.3.5.
These formalisms suffer from several drawbacks, and have some strong points. Of-
ten control theory results and tools are applicable to these formalisms (not always,
e.g., it does not work so well with Lyapunov stability theory). However, often these
approaches suffer from the following drawbacks:

• Discrete behaviour is often oversimplified or even neglected. It is somehow
translated to the continuous world, mostly in ad-hoc fashion, thus expensive and
error-prone1.

• Formalisms usually are not modular, techniques as parallel composition (inter-
connection) are not available, and it complicates work with big and complex
systems.

Automata, process algebras and transition systems Automata (Sections 3.3.6, 3.3.7),
transition systems (Section 3.3.8), process algebras (Sections 3.3.9) and hierarchical
approaches (Sections 3.3.10, 3.3.11) are based on developments in computer science.
Their strength lies in the following characteristics.

• Elaborated techniques to specify and analyse discrete behaviour. Many results
from automata and process algebras research can be used for the analysis of
discrete behaviour of these systems.

• The approaches are modular and support parallel composition.

But there are some serious drawbacks:
1It becomes error-prone and expensive, because every time new development procedures and methods

are (re)invented.

30

i
i

i
i

i
i

i
i

3.3. H 

• Often tools and even algorithms for these formalisms are missing.

• Continuous behaviour is oversimplified or even neglected. Often it is considered
as something what should be specified and analysed by somebody else (e.g.,
control theorists, engineers).

Simulation languages A specific group of formalisms are simulation languages (Sec-
tions 3.3.12 and 3.3.13). As the group name tells, these are mostly used for modelling
and simulation of physical systems, and less for theoretical research. They have tool
support, and often are used in practice.

Grouping of formalisms

Labinaz et al. [1996] separates hybrid formalisms into the following groups.

• Automata and transitions systems: hybrid input/output automata (Section 3.3.8),
hybrid automata (Section 3.3.6), hybrid behavioural automata (Section 3.3.7), Be-
havioural Hybrid Process Calculus (Chapter 5), hybrid process algebra HyPA
(Section 3.3.9), process algebra for hybrid systems (Section 3.3.9), Hybrid χ (Sec-
tion 5),Φ-calculus (Section 5), M (Section 3.3.10), C (Section 3.3.11).

• Algebraic structures [Jacobs, 2000, Grossman and Larson, 1995] are not presented
here.

• Dynamical systems: piecewise affine systems (Section 3.3.2), mixed logical dy-
namical systems (Section 3.3.3), complementarity systems (Section 3.3.4), max-
min-plus-scaling systems (Section 3.3.5).

• Programming languages (also called simulation languages): bond graphs (Sec-
tion 3.3.12), ModelicaTM (Section 3.3.13).

We adopt a refined version of grouping by Labinaz et al. [1996] for the formalisms
listed in Sections 3.3.2–3.3.13.

• Dynamical systems:

◦ Piecewise affine systems (PWA), Section 3.3.2;

◦ Mixed logical dynamical (MLD) systems, Section 3.3.3;

◦ Complementarity (LCS, ELCS) systems, Section 3.3.4;

◦ Max-min-plus-scaling (MMPS) systems, Section 3.3.5.

• Automata:

◦ Hybrid automata (HA), Section 3.3.6;

◦ Hybrid behavioural automata (HBA), Section 3.3.7.

• Hybrid transition systems:

◦ Hybrid I/O automata (HIOA), Section 3.3.8.

• Hybrid process algebras (Section 3.3.9)

31

i
i

i
i

i
i

i
i

3. O     

◦ Behavioural Hybrid Process Calculus (BHPC), Chapter 5;

◦ Hybrid process algebra HyPA ;

◦ Process algebra for hybrid systems (ACPsrt
hs) ;

◦ Hybrid χ ;

◦ Φ-calculus.

• Hierarchical approaches:

◦ M, Section 3.3.10;

◦ C, Section 3.3.11.

• Simulation languages:

◦ Bond graphs, Section 3.3.12;

◦ ModelicaTM, Section 3.3.13.

3.3.2 Piecewise affine systems

Continuous time piecewise affine (PWA) systems [Sontag, 1981, Heemels et al., 2001, De
Schutter and Heemels, 2004], [Cuijpers, 2004, p.89–91] are described by

ẋ = Aix + Biu + fi (3.1a)
y = Cix +Diu + gi (3.1b)

for [x u]T
∈ Ωi and i = 1, . . . ,N where Ωi’s are convex polyhedra, e.g., given by a

finite number of linear inequalities, in the input/state space with non-overlapping
interiors, but coinciding boundaries. The polyhedra can be open or closed. Variables
x ∈ Rn,u ∈ Rm, y ∈ Rk denote the state, input and output, respectively. The Ai,Bi,Ci,Di
are matrices of appropriate dimensions and fi, gi are constant vectors.

Discrete piecewise affine (PWA) systems [Sontag, 1981, Heemels et al., 2001, De Schut-
ter and Heemels, 2004] are described by

x(t + 1) = Aix(t) + Biu(t) + fi (3.2a)
y(t) = Cix(t) +Diu(t) + gi (3.2b)

for [x(t) u(t)]T
∈ Ωi and i = 1, . . . ,N where Ωi are convex polyhedra (i.e., given by a

finite number of linear inequalities) in the input and state space with non-overlapping
interiors. Variables x(t) ∈ Rn,u(t) ∈ Rm, y(t) ∈ Rk denote the state, input and output,
respectively, at time t.

The system is driven by inputs and switching occurs by getting into the different
regions of state space, which are convex polyhedra defined by Ωi’s. The mode of
evolution is determined by the region of the state space.

32

i
i

i
i

i
i

i
i

3.3. H 

Example 3.3.1. Example of an integrator with upper saturation is taken from De Schut-
ter and Heemels [2004]. A simple integrator with upper saturation can be defined as:

x(t + 1) =

x(t) + u(t) x(t) + u(t) 6 1
1 x(t) + u(t) > 1

y(t) = x(t)

It can be rewritten in (3.1) form

Ω1 = {(x(t),u(t)) ∈ R2
| x(t) + u(t) 6 1}

Ω2 = {(x(t),u(t)) ∈ R2
| x(t) + u(t) > 1}

A1 = 1, A2 = 0, B1 = 1, B2 = 0
f1 = 0, f2 = 1, C1 = 1, C2 = 1

D1 = 0, D2 = 0, g1 = 0, g2 = 0

�

A PWA system is called well-posed, if Equation (3.1) is uniquely solvable in ẋ and y,
once x(0) and u are specified.

Remark 3.3.2. In Morari et al. [2003] a different definition of PWA is given. But
this definition already includes some elements of mixed logical dynamical systems
(Section 3.3.3). �

Tool support See Section 3.3.3.

3.3.3 Mixed logical dynamical systems

Discrete time mixed logical dynamical (DT-MLD) systems [Bemporad and Morari, 1999,
Heemels et al., 2001, De Schutter and Heemels, 2004] are described through the fol-
lowing relations:

x(t + 1) = Atx(t) + B1tu(t) + B2tδ(t) + B3tz(t) (3.5a)
y(t) = Ctx(t) +D1tu(t) +D2tδ(t) +D3tz(t) (3.5b)

E2tδ(t) + E3tz(t) > E1tu(t) + E4tx(t) + E5t (3.5c)

where t ∈ Z, At,B1t,2t,3t,C1t,2t,3t,D1t,2t,3t are matrices of suitable dimensions

x = [xc xl]T, xc ∈ R
nc , xl ∈ {0, 1}nl , n = nc + nl

y =
[
yc yl

]T, yc ∈ R
pc , yl ∈ {0, 1}pl , p = pc + pl

u = [uc ul]T, uc ∈ R
mc , ul ∈ {0, 1}ml , m = mc +ml

where x is the state of the system, whose components are distinguished between
continuous xc and {0, 1} xl (logical, translated to 0 − 1 form); y is the output vector; u
is the command input, collecting both binary (on/off) commands (logical commands

33

i
i

i
i

i
i

i
i

3. O     

translated to {0, 1} format) ul and continuous commands uc; δ ∈ {0, 1}rl and z ∈ Rrc

represent auxiliary logical and continuous variables, respectively.
Instead of using the usual logical rules to represent control rules, the logical facts

involving continuous variables are translated to linear inequalities (3.5c). These in-
equalities are mixed with the equations defining continuous dynamics of the system.

Continuous time mixed logical dynamical (CT-MLD) systems can be defined by
replacing x(t + 1) by ẋ in (3.5a) [Bemporad and Morari, 1999]. Nonlinear version
can be defined by changing the linear equations and inequalities in (3.5) to nonlinear
functions.

ẋ = Aix + B1
i u + B2

i δ + B3
i z (3.7a)

y = Cix +D1
i u +D2

i δ +D3
i z (3.7b)

gi > E1
i x + E2

i u + E3
i δ + E4

i z (3.7c)

where x =
[
xT

r xT
b

]T
with xr ∈ Rnr and xb ∈ {0, 1}nb , y,u have a similar structure, and

z ∈ Rrr and δ ∈ {0, 1}nb are auxiliary variables. The inequalities (3.7c) have to be
interpreted component-wise.

Tool support The HYSDEL (HYbrid System DEscription Language) is described in
Section 7.9. It can be combined with Multi-Parametric Toolbox (MPT) [Kvasnica et al.,
2004], which is a free Matlab toolbox for design, analysis and deployment of optimal
controllers for discrete PWA and MLD systems.

3.3.4 Complementarity systems

Complementarity systems [van der Schaft and Schumacher, 2000, p.71–110] are de-
scribed by

f (ẋ, x, y,u) = 0 (3.8a)
0 6 y ⊥ u > 0 (3.8b)

where ⊥ denotes complementarity of y and u. Two vectors of variables of equal length
are called complementary, if for all indices i the pair of variables (ui, yi) is a subject to
complementarity condition (yi = 0 ∨ ui = 0). In this formulation, the variables yi,ui
play completely symmetric roles. Sometimes it is possible to choose yi and ui in such
a way that the conditions can be written in a different manner

ẋ = f (x,u) (3.9a)
y = h(x,u) (3.9b)
0 6 y ⊥ u > 0 (3.9c)

The flow conditions in (3.8), (3.9) should be supplemented by event conditions which
describe what happens when there is a switch between modes. In some applications
such switching structures can be very elaborate.

Applications of linear complementarity systems include constrained mechanical
systems, electrical networks with ideal diodes and other dynamical systems with
piecewise affine relations, variable structure systems, constrained optimal control
problems, projected dynamical systems, and so on [Heemels, 1999, p.27–39].

34

i
i

i
i

i
i

i
i

3.3. H 

Linear complementarity systems

Usually complementarity systems are restricted to linear case, namely linear comple-
mentarity systems(LCS) [van der Schaft and Schumacher, 1998, Heemels et al., 2000,
2001, De Schutter and Heemels, 2004]. An LCS is governed by the equations

ẋ(t) = Ax(t) + B1u(t) + B2w(t) (3.10a)
y(t) = Cx(t) +D1u(t) +D2w(t) (3.10b)
v(t) = E1x(t) + E1u(t) + E3w(t) + g (3.10c)

0 6 v(t) ⊥ w(t) > 0 (3.10d)

where v(t),w(t) ∈ Rs, x(t) ∈ Rn,u(t) ∈ Rk, y(t) ∈ Rl and A,B1,2,C,D1,2,E1,2,3 are matrices
of appropriate dimensions and g is a constant vector of appropriate dimensions. w(t)
and v(t) are called complementarity variables.

Extended linear complementarity systems

Extended linear complementarity systems (ELCS) [De Schutter and Moor, 1995, Heemels
et al., 2001, De Schutter and Heemels, 2004] are defined by equations

ẋ(t) = Ax(t) + B1u(t) + B2d(t) (3.11a)
y(t) = Cx(t) +D1u(t) +D2d(t) (3.11b)

g > E1x(t) + E1u(t) + E3d(t) (3.11c)

0 =
p∑

i=1

∏
j∈φi

(
g − E1x(t) − E1u(t) − E3d(t)

)
j (3.11d)

where d(t) ∈ Rr is an auxiliary variable. Condition (3.11d) is equivalent to∏
j∈φi

(
g − E1x(t) − E1u(t) − E3d(t)

)
j = 0 for each i ∈ {1, 2, . . . , p} (3.12)

due to the inequality conditions (as in inequality (3.11c)), with p groups of linear
inequalities (for every index set φi) such that in every group at least one inequality
should hold with equality.

3.3.5 Max-min-plus-scaling systems

Max-min-plus-scaling systems [De Schutter and van den Boom, 2001, 2002a, De Schutter
and Heemels, 2004] is a class of discrete event systems that can be modelled using
maximisation, minimisation, addition and scalar multiplication.

Symbols∨ and∧will be used to denote maximisation and minimisation, respectively.
If v,w ∈ R then v ∨ w = max(v,w) and v ∧ w = min(v,w).

Definition 3.3.3 (MMPS expression). A max-min-plus-scaling (MMPS) expression f of
x1, . . . , xn is defined by the grammar (Backus Naur form):

f ::= xi | α | f1 ∨ f2 | f1 ∧ f2 | f1 + f2 | β f

with i ∈ {1, . . . ,n}, α, β ∈ R, and where f , f1 and f2 are again MMPS expressions. �

35

i
i

i
i

i
i

i
i

3. O     

In discrete time MMPS expressions are given by equations

x(t + 1) =Mx (x(t),u(t)) (3.13a)
y(t) =My (x(t),u(t)) (3.13b)

c >Mc (x(t),u(t), d(t)) (3.13c)

whereMx,My andMc are MMPS expressions in terms of the components of x(t), the
input u(t) and the auxiliary variables d(t), which are all real-valued.

Example 3.3.4. Let us consider Example 3.3.1. Then in MMPS form it can be defined
as follows:

x(k + 1) = min(x(k) + u(k), 1)
y(k) = x(k).

�

MMPS strength lies in a number of available analytical analysis methods and
algorithms for model predictive controllers (MPC) generation, see, e.g., De Schutter
and van den Boom [2002b].

3.3.6 Hybrid automata

'

&

$

%

Location

Flow conditions

Invariant����

����

��������-Transition
Guard, Reset

�����1

-

����*

Figure 3.1: Hybrid Automaton

The hybrid automaton model [Alur et al., 1993, Henzinger, 1996] is one of the most
popular approaches to model and analyse hybrid systems. Informally the hybrid au-
tomaton model was already explained on the bouncing ball (Section 2.2.1), thermostat
(Section 2.2.2) and railroad gate control (Section 2.2.5) examples. Figure 3.1 depicts
a conceptual view of a hybrid automaton. Essentially, a hybrid automaton combines
two types of behaviour. Discrete changes are described by transitions, which are dec-
orated with action names, guards and resets. The guards define conditions allowing to
take the transition. The resets define changes of continuous state made by the tran-
sition and the action names are used as references in synchronisation. Continuous
behaviour is described in locations. It is given by flow conditions, which define contin-
uous change of the continuous state and usually are given by differential equations,
and invariants, which restrict evolution in the location and usually are given by some
kind of inequalities.

We provide a formal definition of hybrid automata to clarify the details.

Definition 3.3.5 (Hybrid automaton). A hybrid automaton is a collection
H = (X,L, Init, Inv, f ,E,Guard,Assign,Σ) where:

36

i
i

i
i

i
i

i
i

3.3. H 

• X ⊆ Rn is the continuous state space and x = (x1, x2, . . . , xn), where xi ∈ R, i =
1, 2, . . . ,n, represents the continuous dynamics.

• L is a finite set of locations.

• Init ⊆ L × X is a set of initial location state pairs.

• Inv : L → 2X assigns to each location l an invariant to be satisfied by the state x
while in the location l.

• f : L → (X → Rn) assigns to each location l a continuous vector field fl such that
the state x ∈ X should satisfy d

dt x = fl(x).

• E ⊆ L × Σ × L is the set of transitions, also called switches, where Σ is a set of
transition labels.

• Guard : E → 2X assigns to each transition a guard that has to be satisfied by the
state x if the transition is taken.

• Assign : E→ (X→ X) assigns to each transition an assignment that may alter the
state x when the transition is taken.

�

Tool support Hybrid automata are supported by several tools.
HyTech (Section 7.9) is an automatic tool for the analysis of embedded systems.

HyTech computes the condition under which a linear hybrid system (each vector field
is linear) satisfies a temporal requirement. Hybrid systems are specified as collections
of automata with discrete and continuous components, and temporal requirements are
verified by symbolic model checking. If the verification fails, then HyTech generates
a diagnostic error trace.

d/dt (Section 7.9) is a tool for reachability analysis of continuous and hybrid systems
with linear differential inclusions. The tool accepts as input a hybrid automaton where
continuous dynamics are linear possibly with uncertain, bounded input of the form
dx
dt = Ax + u where u is input taking values in a bounded convex polyhedron U and
invariants and transition guards are defined by convex polyhedra.

3.3.7 Hybrid behavioural automaton

Hybrid behavioural automaton was introduced in Julius et al. [2002], exhaustive de-
scription of HBA and some of its applications are available in Julius [2005]. It is a
modification of hybrid automata based on the use of the behavioural theory [Polder-
man and Willems, 1998].

Here we present a definition of hybrid behavioural automaton (HBA) from Julius
[2005, p.20–21].

Definition 3.3.6 (Hybrid behavioural automaton). A hybrid behavioural automaton is a
collection A = (L,W,B,E,T, Inv), where

• L is a set of locations of discrete states;

37

i
i

i
i

i
i

i
i

3. O     

• W is the set of continuous variables taking values inW;

• B maps each location to its continuous behaviour. A behaviour is a subset of
WR+ ;

• E is a set of events/labels;

• T is the set of transitions. Each transition is given as a 5-tuple (l, a, l′,G,R). The
triple (l, a, l′) is a subset of L × E × L, where l is the origin location, a is the label
of the transition, l′ is the target location. G := (γ, g) is the guard of the transition,
where γ : B(l)×R+ → range(ν) and g ⊂ range(γ), and R : B(l)×R+ → 2B(l′) is the
reset map of the transition.

• Inv is the invariant condition for the automata. It maps each location l ∈ L to a
pair Inv(l) := (ν,V), where ν : B(l) ×R+ =→ range(ν) and V ⊂ range(ν).

�

A hybrid execution [Julius, 2005, p.22] can be thought of as a trajectory of type
(
R+ ×

Z+,L × (W ∪ (E ×WR+))
)

in the following sense. Each trajectory is associated with
the subset of (R+ × Z+), on which it is defined. If ς is a hybrid execution, the subset
is denoted as Tς. It is assumed that for any hybrid execution ς, its time axis Tς is
structured such that

• (0, 0) ∈ Tς;

• For any t ∈ R+ and n ∈ Z+ then (t,n′) ∈ Tς for all nonnegative integer n′ < n;

• For any t ∈ R+, if (t, 0) ∈ Tς then (t′, 0) ∈ Tς for all nonnegative real t′ < t.

The execution of HBA starts in a particular location, and proceeds with a continuous
trajectory that satisfies the invariant condition in the location. Whenever there is a
transition, whose guard is satisfied, a transition can occur. When a transitions occurs,
the location changes, and the continuous trajectory is reset to another one compatible
with the reset map and the invariant condition of the new location.

3.3.8 Hybrid input/output automata

A Hybrid input/output automaton (HIOA) [Lynch et al., 2003] is a mathematical frame-
work for modelling and analysis of hybrid systems. It has evolved from the well
known Input/Output Automata [Lynch and Tuttle, 1989]. HIOA is a kind of nondeter-
ministic, potentially infinite-state, state machine. The state of it is defined by state
variables. It may be augmented with special input and output variables. The state
changes in two ways.

• Discrete transitions change the state instantaneously.

• The state can change according to some trajectory when time passes. Trajectories
are continuous or discontinuous functions that describe the evolution of the state
variables along with the input and output variables over time intervals.

38

i
i

i
i

i
i

i
i

3.3. H 

Let V ⊆ V be a set of variables. A valuation v for V is a function that associates
with each variable v ∈ V a value in type(v) (where type(v) is a (static) type of v). We
write val(V) for the set of valuations for V. Let J be a left-closed interval of T (where
T is a time axis) with left endpoint equal to 0. Then a J-trajectory for V is a function
τ : J→ val(V), such that for each v ∈ V, τ ↓ v ∈ dtype (where dtype(v) is a (dynamic) type
of v, i.e., a set of functions from left-closed intervals of T to type(v)). A trajectory for V
is a J-trajectory for V, for any J. We write trajs(V) for the set of all trajectories for V.

Here we provide definitions of a hybrid automaton (different from the hybrid au-
tomaton defined in Section 3.3.6) and the hybrid input/output automaton from Lynch
et al. [2003].

Definition 3.3.7 (Hybrid automaton). A hybrid automaton (HA)
A = (W,X,Q,Θ,E,H,D,T) consists of

• A set W of external variables and a set X of internal variables, disjoint from each
other (V ,W ∪ X).

• A set Q ⊆ val(X) of states.

• A nonempty set Θ ⊆ Q of start states. Disjoint sets E of external actions and a set
H of internal actions (A , E ∪H).

• A set D ⊆ Q×A×Q of discrete actions. Action a is enabled in x, iff ∃x′ (x, a, x′) ∈ D.

• A set T of trajectories for V such that τ(t)dX ∈ Q ∀τ ∈ T and t ∈ dom(τ).

Notation is extended, namely x a
−→A x′ is used as a shorthand for (x, a, x′) ∈ D, and

A is omitted, when it is clear from the context. Given the trajectory τ ∈ T , the first
valuation of trajectory τ restricted to X (τ.fvaldX) is denoted by τ.fstate. If τ is closed
then τ.lvaldX (last valuation of τ) is denoted by τ.lstate. In addition, the following
axioms should hold

• (Prefix closure) ∀τ ∈ T ∧ τ′ 6 τ =⇒ τ′ ∈ T .

• (Suffix closure) ∀τ ∈ T ∧ t ∈ dom(τ) =⇒ τ D t ∈ T , where τ D t , (τd[t,∞)) − t.

• (Concatenation closure) Let τ0, τ1, . . . be a sequence of trajectories in T such
that, for each non-final index i, τi is closed and τi.lstate = τi+1.fstate. Then
τ0

^ τ1
^ τ2 · · · ∈ T .

�

For details and explanations see Lynch et al. [2003].
Based on the definition of hybrid automata 3.3.7 a hybrid input/output automata

is defined.

Definition 3.3.8 (Hybrid I/O automaton). A hybrid I/O automaton (HIOA)A is a tuple
H ,U,Y, I,O) where

• H = (W,X,Q,Θ,E,H,D,T) is a hybrid automaton (Definition (3.3.7)).

• U and Y partition W into input and output variables, respectively. Variables in
Z , Z ∪ Y are called locally controlled and V ,W ∪ X.

39

i
i

i
i

i
i

i
i

3. O     

• I and O partition E into input and output actions, respectively. Actions in
L , E ∪U are called locally controlled and A , E ∪H.

The following axioms should be satisfied

• (Input action enabling) ∀x ∈ Q ∧ ∀a ∈ I ∃x′ ∈ Q such that x a
−→ x′.

• (Input trajectory enabling) ∀x ∈ Q ∧ ∀v ∈ trajs(U) ∃τ ∈ T such that
τ.fstate = x, τ ↓ U 6 v, and either

◦ τ ↓ U = v, or
◦ τ is closed and some l ∈ L is enabled in τ.lstate.

�

For details and explanations see Lynch et al. [2003].

3.3.9 Process algebras for hybrid systems

Process algebra (in some sources referred to as a process calculus) forms a framework
for modelling and analysis of broad class of systems. It has been developed in the
computer science community throughout the last several decades starting from the in-
novative works of Hoare [1978] and Milner [1980], and many others developed further
on by, see e.g., Bolognesi and Brinksma [1987], Baeten and Weijland [1990]. Process
algebra provides a starting point for a structured approach and a systematic methodol-
ogy for design and development of large and complex systems in a compositional and
hierarchical way. It is a mathematical structure that is intended to describe processes
and interaction amongst them.

A (labelled) transition system is used to describe the dynamic behaviour of the system.
It consists of the states and a construct that defines changes of the states. Usually such
changes are defined by transitions, which are defined as a relation over a subset of
Cartesian product of the (source and target) states and labels, where labels refer to
actions. The basic labelled transition system can be defined as follows.

Definition 3.3.9 (Transition system). A labelled transition system is a collection TS =
(S,A,→) where:

• S is a set of states denoted by s1, s2,

• A is a set of actions denoted by a1,a2,

• →⊆ S ×A × S is a transition relation.

We will write s a
−→ s instead of (s,a, s) ∈→ to simplify notation.

If an initial state s0 ∈ S is distinguished, then a structure (TS, s0) is called a rooted
transition system. �

A simple version of language for untimed systems can be defined as follows.

B ::= 0 a.B B1 + B2 B1 ‖A B2 B [σ] P

where a ∈ A is an action name, A ⊆ A is a synchronisation set and σ is a renaming
function.

40

i
i

i
i

i
i

i
i

3.3. H 

a.B a
−→ B

B a
−→ B′

P a
−→ B′

P , B
B1

a
−→ B′1,B2

a
−→ B′2

B1 ‖A B2
a
−→ B′1 ‖A B′2

a ∈ A

B a
−→ B′

B [σ]
σ(a)
−−→ B′ [σ]

B1
a
−→ B′1

B1 + B2
a
−→ B′1

B2 + B1
a
−→ B′1

B1
a
−→ B′1

B1 ‖A B2
a
−→ B′1 ‖A B2

B2 ‖A B1
a
−→ B2 ‖A B′1

a < A

Table 3.5: SOS rules for simple process algebra

• 0 is a deadlock (in some sources it is called stop), the process that does not show
any behaviour.

• a.B is an action-prefix. It first performs a and then engages in process B.

• B1+B2 is a choice operator (in some sources referred to as an alternative composition).
It selects one of the two processes nondeterministically and engages in it.

• B1 ‖A B2 is a parallel composition operator. It defines a process that executes
processes B1 and B2 concurrently forcing the actions from A to synchronise. If
the actions are not in A, they are executed in an interleaving manner, i.e., they
are executed sequentially in an arbitrary order.

• B [σ] defines an action renaming, where function σ takes an action name and
changes it into another action name. B [σ] behaves like B but with the actions
renamed according to σ.

• P , B is a recursion, where P is a process identifier and it behaves as B.

Typically, additional operators, e.g., disrupt [Bolognesi and Brinksma, 1987], commu-
nication merge [Baeten and Weijland, 1990], are added for convenience.

The behaviour of the processes is given by transition systems. Structural opera-
tion semantics (SOS) rules [Plotkin, 1981, 2003] is one of the ways to describe, how a
transition system is built by the processes, stepwise. The rules have a form

premises
conclusions

and state that if the premises hold, then so do the conclusions. We exemplify use of
the SOS rules for our example process algebra in Table 3.5.

In some cases [Milner, 1980, Baeten and Weijland, 1990] an axiomatisation (in some
sources called equational theory) was taken as a starting point to get an algebra in purely
mathematical sense. We are not going into the details and refer an interested reader
to Milner [1980].

The presented process algebra can be used to specify untimed systems. How-
ever, the same basic ingredients are used in extended versions as timed [Baeten and
Bergstra, 1991, D’Argenio and Brinksma, 1996, D’Argenio, 1999], mobile [Milner, 1999],
probabilistic [D’Argenio et al., 1999, Andova, 2002], stochastic [D’Argenio et al., 1997,
D’Argenio, 1999] and hybrid process algebras [Rounds and Song, 2003, Bergstra and
Middelburg, 2005, van Beek et al., 2004, Cuijpers, 2004, Brinksma and Krilavičius,
2005]. We discuss hybrid process algebras in more details below and in Chapter 5.

41

i
i

i
i

i
i

i
i

3. O     

Process algebra for hybrid systems

Bergstra and Middelburg [2005] proposes ACPsrt
hs , a process algebra for hybrid sys-

tems. It is an extension of combination of ACPsrt [Baeten and Middelburg, 2002] and
ACPps [Baeten and Bergstra, 1997].

The ACPsrt
hs language contains the usual process algebraic operators extended to

deal with hybrid behaviour and in addition is augmented with operators to express
continuous-time evolution. Continuous-time components in the process algebra for
hybrid systems are defined by signals, and consequently operators to define processes
emitting signals (ψ ∧N P, φ ∩HV P) are introduced. The first operator (ψ ∧N P) emits the
signalψ and then behaves as P. The second expression (φ∩HV P) evolves according to φ
until P performs its first action (the action is not allowed to violate φ). State changing
transition in ACPsrt

hs is performed by transition operatorχuHP withχdefining transition
conditions and P the process that continues afterwards.

Alternative composition (P1 + P2) defines an arbitrary choice between processes.
The choice is resolved by one of them performing its first action. The choice between
idling processes will be postponed until one of them can perform its first action. If both
processes cannot idle any longer, postponement is not an option. If one of processes
cannot idle any longer and choice has not yet been resolved, the the choice will not be
resolved in its favour. While idling, the conjunction of signals emitted by processes is
emitted.

Parallel composition (P1‖P2) has interleaving semantics and behaves in the following
way: (1) first either P1 or P2 performs its first action and next it proceeds in parallel
with the process following that action and the processes that did not perform an action;
(2) if their first actions can be performed synchronously, first P1 and P2 perform their
first actions synchronously and next it proceeds in parallel with processes following
those actions. If processes choose to idle then the following rules apply: (1) one of
the processes can perform an action only before other process starts performing an
action or deadlocks; (2) processes can synchronise at some time moment. The state
transitions caused by performing the first action must not be precluded by the other
process: (1) the signal emitted by the other process must hold in the state immediately
before and after the transition; (2) if the other process is idling when the action is
performed, a state evolution with discontinuities for the state variable of which the
value changes by the transition must be possible. There is only one action left when
actions are performed synchronously.

Unfortunately, strong bisimulation is not a congruence in ACPsrt
hs .

Example 3.3.10 (Thermostat). To illustrate ACPsrt
hs an example from Bergstra and Mid-

delburg [2003] is presented.
Initially, the temperature is 18 ◦C and the heating is on. While the heating is on, the

temperature T in the room goes up according to the differential equation Ṫ = −T + 22.
When the temperature becomes 20 ◦C, the heating will be turned off. While the heating
is off, the temperature in the room goes down according to the differential equation
Ṫ = −T + 17. When the temperature becomes 18 ◦C, the heating will be turned on
again.

42

i
i

i
i

i
i

i
i

3.3. H 

The recursive specification of the thermostat consists of the following equations:

Th =(T = 18) ∧N Thon,

Thon =(18 6 T 6 20 ∧ Ṫ = −T + 22)∩H

σ∗rel

(
(T = 20) :→

(
(T• = •T) uH ˜̃turn−off · Thoff

))
,

Thoff =(18 6 T 6 20 ∧ Ṫ = −T + 17)∩H

σ∗rel

(
(T = 18) :→

(
(T• = •T) uH ˜̃turn−on · Thon

))
.

The signal transition operator uH and the signal evolution operator ∩H are needed here
to make precise that the temperature in the room does not change instantaneously at
the points of time at which the heating is turned off or on and that the temperature
in the room changes continuously as described above during the periods in between.
Conditional progress is expressed by operator (φ :→ P). It behaves as P if conditions φ
hold at its start. Relative delay operator σ∗rel(P) idles for time rel and then proceeds as
P. �

Hybrid process algebra HyPA

Hybrid process algebra HyPA [Cuijpers, 2004, Cuijpers and Reniers, 2005] is a con-
servative extension of ACP [Baeten and Weijland, 1990] augmented with a disrupt
operator from LOTOS [Bolognesi and Brinksma, 1987]. Variants of flow and a re-
initialisation-clause from van der Schaft and Schumacher [2000] are added to handle
hybrid behaviour.

Strong bisimulation is not a congruence relation with respect to the parallel compo-
sition of the subsystems in HyPA. However, robust bisimilarity [Cuijpers, 2004, p.68–70]
and stateless bisimilarity [Cuijpers and Reniers, 2005] are congruences [Mousavi, 2005,
p.163–166].

Hybrid transition system [Cuijpers, 2004, p.60–61] defines dynamic behaviour of
the HyPA.

Definition 3.3.11 (Hybrid transition system). A hybrid transition system is a six-tuple
〈X,A, σ, 7→,{,X〉, consisting of a state space X, a set of action labelsA, a set of flow labels
Σ, and transition relations 7→⊆ X ×A×X and{⊆ X ×Σ×X, and termination predicate
X ⊆ X. �

For the transitions following notation is used: 7→ denotes a discrete transition; {
denotes a signal transition;→ denotes any type of transition.

HyPA language includes classical process algebraic operators extended to deal
with hybrid behaviour and several additional operators to handle continuous-time
evolution and its interaction with discrete counterpart. Flow clauses (c ∈ C) model
never terminating physical behaviour. Flows are described by flow predicate, and
are called solutions of that predicate. Discrete changes of continuous behaviour are
modelled by re-initialisation operator (d� p), where d is a re-initialisation clause defining
changes of signal.

43

i
i

i
i

i
i

i
i

3. O     

Alternative composition (P⊕P) models a nondeterministic choice between processes.
It is nondeterministic for both the discrete and continuous actions. The passing of
time influences the valuation of the model variables and can introduce choices in the
system behaviour. The choice is done before an action.

Parallel composition (P ‖ P) models concurrent execution of processes. Discrete
actions are executed in an interleaving manner, i.e., if two actions synchronise, they
are executed at the same time and are observable as a new action described by a
communication function (γ ∈ A × A 7→ A). If actions do not synchronise they are
executed sequentially in an arbitrary order. Flow clauses, in contrast to discrete
actions, have to synchronise all the time. They synchronise only if they coincide.

Example 3.3.12 (Steam boiler). The boiler process [Cuijpers and Reniers, 2003], [Cui-
jpers, 2004, p.66–67] consists of a volume of water V

[
m3

]
, an inflow of water Qi

[
m3

sec

]
and a steam production Qs

[
m3

sec

]
. The relation amongst volume, inflow and steam pro-

duction, is described by the differential equation V̇ = Qi − Qs. The steam production
is determined by the Heater process, which limits it between the constants Qmin

[
m3

sec

]
and Qmax

[
m3

sec

]
. We do not have more information on the Heater, and can not describe

the behaviour of s in more detail. The inflow is determined by a Valve process, which
can be opened and closed using the actions ro and rc, respectively. If the valve is
open, the inflow to the boiler has value Qin

[
m3

sec

]
. If it is closed, the inflow is 0

[
m3

sec

]
.

Furthermore, there is a Controller that interferes with the valve by telling it to open
and close using the action so and sc. The goal of this controller, is to keep the volume
of water between the constants Vmin

[
m3

]
and Vmax

[
m3

]
. The controller uses a clock

t [sec] to measure the sampling time T [sec] between interactions. Furthermore, it
takes a margin of Vsafe

[
m3

]
into account, to compensate for errors due to the sampling

time. The total system is the parallel composition of the Water process, the Heater, the
two modes of the Valve, and the Controller, over which communication is enforced
through the definitions op = ro γ so, cl = rc γ sc, and H = {so, sc, ro, rc}:

Water :
w | ẇ = v − s


Heater :

smin 6 s 6 xmax


ValveOpen:
v = vin

 I (rc � ValveClose)

ValveClose :
v = 0

 I (
ro � ValveOpen

)
Controller :

[
t | t+ = 0

]
�

t
ṫ = 1
t 6 T

 I [t− = T]� [w− > wmax − wsafe]� sc � Controller⊕
[wmin + wsafe 6W− 6 wmax − wsafe]� Controller⊕
[w− 6 wmax + wsafe]� so � Controller


Boiler : ∂H

(
Water ‖ Heater ‖

(
ValveOpen ⊕ ValveClosed

)
‖ Controller

)
In the example � denotes sequential composition, i.e., sequential executions of pro-
cesses. Disrupt operator I, originally introduced in LOTOS [Bolognesi and Brinksma,
1987], defines a special type of sequential composition, such that the second process

44

i
i

i
i

i
i

i
i

3.3. H 

.
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

...... .
............

......

s -
Fd�

F f
6FN

Figure 3.2: Dry friction

can take over the executions without waiting for the first one to terminate. Encapsula-
tion ∂H(P) models that certain dicrete actions (from the set H ⊆ A) are blocked during
the execution of the process P. In this example it is used to model that synchronisation
between discrete actions is enforced. �

Tool support Linearization2 of HyPA is described in van den Brand et al. [2005].
Simulation tool for HyPA is presented in Schouten [2005].

Hybrid χ

Hybrid χ [Schiffelers et al., 2003, van Beek et al., 2004] is a process algebraic formalism
for modelling and analysis of hybrid systems.

Continuous-time behaviour in Hybrid χ is modelled by a signal emission operator
(denoted uy P) and a delay predicate ([v]). u is a predicate over variables that should
hold initially over extended valuation, and then the process behaves as P. Otherwise
it is considered to be inconsistent. Delay predicate defines change of the χ variables
over time with conditions (v) usually in the ODE/DAE form.

In Schiffelers et al. [2003] version of Hybrid χ two types of choice amongst the
processes are adopted: a choice and an alternative composition (denoted P 8 P). The
first one is nondeterministic for the discrete actions and does not make a choice for
the continuous time transitions. The second is the same for the discrete actions, and
uses the weak time-determinism principle, which means that the passage of time cannot
result in making a choice, if both alternatives can perform the transition with the same
trajectory and the same time step. If one of the processes can perform a time transition
and the other cannot, then the alternative is lost. In van Beek et al. [2004] choice oper-
ator is abandoned and only alternative composition is used. It allows nondeterministic
choice between actions, and continuous variables should synchronise (passage of time
cannot result in making choice).

Parallel composition (P ‖ P) of χ adopts usual interleaved semantics for actions. The
time behaviour of processes is synchronised over channels (H is a set of channels labels)
by means of the send action h !! en and receive action h ?? xn, where h is a channel. en
and xn denote the values of expressions which are sent are received over the channel,
respectively.

Example 3.3.13 (Dry friction). In Figure 3.2 a dry friction [van Beek et al., 2004] phe-
nomenon is depicted. A driving force Fd is applied to a body on a flat surface with
frictional force F f . When the body is moving with positive velocity v, the frictional

2Informally, linearization is a procedure of transforming a process algebraic expression into an equivalent
system of linear process equations, i.e., a process algebraic expression containing only basic process algebraic
operators (action prefix, alternative composition) and a special form of recursion [Usenko, 2002].

45

i
i

i
i

i
i

i
i

3. O     

force is F f = µFn (Fn = mg). When the velocity is zero and |Fd| < µ0FN, the frictional
force neutralises the driving force.

〈cont x, v, alg Fd

, x = 0, v = 0,
stop 7→ v = 0,−µ0Fn 6 Fd 6 µ0Fn 8

[
Fd 6 −µ0FN → skip

]
; neg

8
[
Fd > −µ0FN → skip

]
; pos

pos 7→ mv̇ = Fd − µFN, v > 0 8 Fd 6 µ0FN → skip ; stop
8
[
Fd 6 −µ0FN → skip

]
; neg

neg 7→ mv̇ = Fd + µFN, v 6 0 8 Fd > −µ0FN → skip ; stop
8
[
Fd > µ0FN → skip

]
; pos

| Fd = f (time), ẋ = v
skip ; neg 8 skip ; stop 8 skip ; pos
〉

Semicolon (;) in Hybrid χ denotes a sequential composition. �

Tool support The hybrid χ simulator is described in Section 7.9. For more informa-
tion about Chi simulator (compiler) see http://chi-compiler.gforge.se.wtb.tue.
nl.

Φ-calculus

Φ-calculus [Rounds and Song, 2003] extendsπ-calculus [Milner, 1999] by adding active
environments that flow continuously over time. This allows to model hybrid mobile
systems, i.e., systems that can reconfigure themselves, certain components can appear
and disappear from the system.

The system defined in Φ-calculus can evolve in several different ways.

• System may execute discrete actions that change only the process expressions.

• System may engage in flow actions that change only the environment continu-
ously.

• Φ-specific actions that change both the environment and a process expressions
discretely.

3.3.10 Masaccio

M [Henzinger, 2000, Henzinger et al., 2001] is a hierarchical model for hybrid
dynamical systems, based on Statecharts [Harel, 1987] and hybrid automata (Sec-
tion 3.3.6). It is a formal model for hybrid dynamical systems which are built from
atomic discrete components (difference equations) and atomic continuous components (dif-
ferential equations) using parallel composition, serial composition (choice), renaming,

46

http://chi-compiler.gforge.se.wtb.tue.nl
http://chi-compiler.gforge.se.wtb.tue.nl

i
i

i
i

i
i

i
i

3.3. H 

hiding of variables and components. Components communicate via interfaces, which de-
termine the possible use of the components, and executions (a set of executions), which
define the potential behaviours of the component.

Atomic components are specified by guarded jump actions. Atomic continuous
components are specified by flows, which can be defined using differential equations.

M requires the components dependency relation to be acyclic to guarantee
the existence of input/output values for atomic discrete components and trajectories
for atomic continuous components. This condition is quite restrictive and it eliminates
some potential sources of nondeterminism.

3.3.11 Charon

C [Alur et al., 2000, 2001] is a language for hierarchical specification of the
interacting hybrid systems (hierarchical approach). It extends Statecharts [Harel, 1987]
by adding continuous behaviour and formalising it for modelling and simulation
needs.

The building block for describing the system architecture in C is an agent that
communicates with its environment via shared variables. Agents can be composed
using a parallel composition to model concurrency, a hiding of variables to restrict sharing
of information and an instantiation to support reuse. The flow inside an agent is
described using a mode, where the mode is a hierarchical state machine that can
have submodes and transitions connecting them. Modes communicate only via well-
defined entry and exit points. State of system is changed by:

• Discrete updates, which are specified by guarded actions. Interleaving semantics is
assumed for parallel composition of actions.

• Continuous updates, which are specified only for analog variables by several types
of constraints, which can be defined at different levels of mode hierarchy:

◦ Differential constraints (differential equations);

◦ Algebraic constraints (algebraic equations);

◦ Invariants (e.g., inequalities).

C supports nondeterminism for both discrete and continuous updates. Oper-
ational and trace semantics are defined for modes and agents. For further information
see [Alur et al., 2000, 2001].

Tool support Java implementation of C toolkit is available (Section 7.9).

3.3.12 Bond graphs

Bond graphs [Broenink, 1999, van Amerongen and Breedveld, 2003] are a graphical
description of dynamic behaviour of physical systems, based on energy and energy
exchange. Bond graphs are directed graphs, where:

• Nodes are called:

◦ Elements and represent basic physical components;

47

i
i

i
i

i
i

i
i

3. O     

◦ Junctions and represent energy conservation laws.

• Edges are called bonds and represent the energy exchange and the energy flow
direction (causal stroke). Bonds can be interpreted in two ways:

◦ As an interaction of energy. The connected subsystems form a load to each
other by their energy exchange;

◦ As a bilateral signal flow. The connection is interpreted as two signals,
an effort and flow, flowing in opposite direction, thus determining the
computational direction of the bond variables.

Every edge and node are assigned algebraic differential equations (DAE), which de-
scribe the behaviour of the system.

The main elements of bond graphs are following:

• Storage elements:

◦ Generalised displacement, for a q-type variables (denoted C), e.g., capacitors
(charge), springs (displacement), volume, angular displacement;

◦ Generalised momentum, for a p-type variables (denoted I), e.g., inductors (flux
linkage), masses (momentum), angular momentum, pressure momentum.

• Dissipations (denoted R), e.g., electric resistor, mechanical friction.

• Sources (denoted Se, Sf), e.g., electric mains (voltage), gravity (force), pump
(flow).

• Conversions:

◦ Transformers (denoted TF), e.g., electric transformers, toothed wheels;

◦ Gyrators (denoted GY), e.g., electro-motor, centrifugal pump.

• 0- and 1-junctions (denoted 0 1) for ideal connecting two or more sub-models.

• Distributions:

◦ Effort (denoted E), e.g., force, torque, voltage, pressure;

◦ Flow (denoted F), e.g., velocity, angular velocity, current, volume-flow.

Tool Support Bond graphs modelling is supported by the industrial strength 20-sim
modelling and simulation package3 (Section 7.9).

3http://www.20sim.com/.

48

http://www.20sim.com/

i
i

i
i

i
i

i
i

3.3. H 

3.3.13 Modelica

ModelicaTM [Fritzson and Engelson, 1998, Mod, 2005]4 is a language for hierarchical
physical modelling. It is an object oriented language for modelling of physical systems
for the purpose of simulation. It is

• Non-causal, i.e., based on differential and algebraic equations;

• Multi-domain, i.e., it is possible to combine different physical domains in one
model;

• Has a general type system that unifies object-orientation, multiple inheritance
and templates within a class construct.

Models are declared as classes with interfaces (connectors), which contain all informa-
tion required to define the interaction. Models can be extended using inheritance and
encapsulation mechanisms. The equations describe models non-causally.

Basic semantics of ModelicaTM is given by the hybrid DAE (hybrid differential algebraic
equations). A hierarchical ModelicaTM model is transformed to the following form
v :=

[
ẋ; x, y; t; m; pre(m); p

]
c := fc(relation(v))

m := fm(v, c)
0 = fx(v, c)

where

• p are ModelicaTM variables declared as parameters or constants;

• t is a ModelicaTM variable time;

• x(t) are ModelicaTM variables of the type R, appearing differentiated;

• m(te) are ModelicaTM variables of the following types D R, B,
I, which are unknown. They change value only at event instants te. pre(m)
are the values of m immediately before the event (left-limit);

• y(t) are algebraic ModelicaTM variables of type R;

• x(te) are the conditions of all if expressions including when clauses;

• relation(v) is a relation containing variables vi (variables from inequalities).

Tool Support ModelicaTM language is used in several tools, which are described in
Section 7.9.

4For more information see http://www.modelica.org/

49

http://www.modelica.org/

i
i

i
i

i
i

i
i

3. O     

3.4 Conclusions

In this chapter we surveyed a collection of hybrid formalisms. By no means, the
collection is complete, as only typical representatives of different types of approaches
were selected. Nevertheless, the formalisms reveal critical qualifications necessary to
handle hybrid phenomena in its diverse appearances.

Thus, for the control theory based approaches, usually it is easy to adopt con-
trol theory tools and results (not always, for example, it does not work well with
Lyapunov stability theory). But at the same time discrete behaviour is often over-
simplified. Frequently such formalisms are not modular, i.e., techniques as parallel
composition (interconnection) and choice are not available. It complicates work with
big and complex systems. Without proper modularity support reuse of components is
awkward and distribution of work and responsibilities is not obvious, if not intricate.

The situation in the approaches originating from computer science is almost oppo-
site. Formalisms as automata, process calculi and hierarchical approaches are modu-
lar and support hierarchical and (or) compositional modelling. Diverse techniques to
specify and analyse discrete communication are available. But serious drawbacks can
be found on the continuous side. Frequently continuous behaviour is oversimplified.
Often it is considered as something what should be specified and analysed by some-
body else, for example, control theorists or engineers. Not seldom tools and analysis
techniques are just future work.

A third group, the simulation languages, provide good tool support and are often
used in practice. However, the theoretical foundations usually are not so precise.
Syntax and semantics are not suited for further theoretical research, and complicates
implementation of new developments in the area.

Diversity of approaches and often contradictory requirements show that the ulti-
mate formalism is not there yet. It may be a quest for Utopia, but analysis of strong
and weak points of formalisms and studies of examples contribute for gradual im-
provement of methods and techniques dealing with hybrid systems.

Several development paths for hybrid systems formalisms are plausible. Practition-
ers are likely to further specialise in the approaches that smoothly handle particular
aspects of hybrid phenomena and satisfactorily solve specific problems. Another
direction is development of general methods and techniques that are applicable to
broader classes of hybrid systems and are suitable for solving general problems, but
at the same time may lack some performance or decisiveness. We believe that both
approaches contribute equally to the research field.

We think that a unifying formalism would contribute to the hybrid systems research.
That is an approach where both continuous and discrete behaviours are treated on the
equivalent terms. Moreover, we would like to emphasise the importance of the mod-
ular development techniques, especially compositionality. It is not just convenient,
but indispensable in the development of large systems. Furthermore, it is a necessary
condition for trustworthy reuse of components. Definitely, such unifying formalism
should provide a natural and foundational treatment of hybrid phenomena. Of course,
besides all these nice theoretical properties, it should be applicable in practice, that is,
techniques for modelling and analysis eventually should result in effective tools.

50

i
i

i
i

i
i

i
i

Everything that’s extreme is difficult. The middle
parts are done more easily. The very centre requires
no effort at all. The centre is equal to equilibrium.
There’s no fight in it.

Daniil Kharms

4
Stability analysis for hybrid automata

4.1 Introduction

We present stability analysis for hybrid automata in this chapter. Some results were
published in Langerak et al. [2003a,b]. In this work we demonstrate that cooperation
between computer science and control theory can yield fruitful results.

The problem of hybrid systems stability has been known to be non-trivial. By now
there are many stability results, some of which we discuss in Section 4.1.2. However,
most of these results are applicable only to certain classes of hybrid systems. In this
chapter we propose a general technique for stability analysis of hybrid automata. We
exploit structure of automata and cyclic nature of stability of hybrid automata, as well
as means to estimate influence of switches and continuous behaviour in locations on
stability of hybrid automata. So-called gains define effect of switches and locations
to stability. However, the procedures to estimate gains are not always known. We
describe procedures for the gains estimation of certain class of automata, namely Linear
Continuous Hyperplane Hybrid Automaton. However, we believe that this technique can
be relatively easily extended to a wider class of hybrid automata.

4.1.1 Stability

Stability analysis is a well-established research area. The notion of stability is very
important in the systems and control theory. Intuitively, stability means that small
disturbances and small initial deviations should not alter the system’s behaviour
significantly. We provide a formal definition of stability in the following section. A
wider discussion on stability is available in Willems [1970], Polderman and Willems
[1998] and in most systems and control theory textbooks.

51

i
i

i
i

i
i

i
i

4. S    

4.1.2 Hybrid stability
x ’ = − x + 10 y
y ’ = − 100 x − y

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x

y

Figure 4.1: Trajectory of ẋ = A1x

x ’ = − x + 100 y
y ’ = − 10 x − y

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x

y
Figure 4.2: Trajectory of ẋ = A2x

-4

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

-10 -5 0 5 10 15 20 25 30 35 40 45 50 55

Figure 4.3: Unstable hybrid system

Hybrid systems can have very complex behaviour. Even very simple continuous
dynamics can harbour some nasty behaviour (see Section 2.2.1). It is not surprising
that stability analysis for hybrid systems is often very complicated and results are
available only for certain, usually small, classes of hybrid systems.

We present a motivating example to show that difficulties can be encountered even
in apparently simple cases.

52

i
i

i
i

i
i

i
i

4.1. I

Example 4.1.1. Consider the hybrid system taken from Branicky [1998]

ẋ =

A1x, if x1x2 < 0
A2x, if x1x2 > 0

A1 =

[
−1 10
−100 −1

]
A2 =

[
−1 100
−10 −1

]
Both dynamics ẋ = A1x and ẋ = A2x are stable, as the trajectories in Figures 4.1 and 4.2
indicate. However, the hybrid system with ẋ = A1x in the second and fourth quadrants,
and ẋ = A2x in the first and third quadrants with initial conditions x(0) = [1 0]T is
unstable, see Figure 4.3. �

Related Research Stability is one of the major problems in the area of hybrid dynam-
ical systems. By now there are many results on the stability of hybrid systems, for an
overview see Ye et al. [1998], D.Liberzon and A.S.Morse [1999], Michel [1999], Lygeros
and Sastry [1999], DeCarlo et al. [2000], Davrazos and Koussoulas [2001].

Classical Lyapunov theory is a general approach to study stability of dynamical
systems. Lyapunov functions (Definition 4.4.1) belong to a special class of functions that
can provide an upper-bound to a system state without explicitly calculating it. Several
attempts have been made to apply modified versions to stability analysis of hybrid
systems. Usually, two main courses are taken: (1) Common Lyapunov function and (2)
Multiple Lyapunov functions approaches.

Common Lyapunov function: This approach is based on checking the existence of a
Lyapunov function common to all locations [D.Liberzon and A.S.Morse, 1999].
It is limited to rather small class of linear hybrid systems [Davrazos and Kous-
soulas, 2001]. One serious drawback is the difficulty to construct a common
Lyapunov function: it is easy to design examples of hybrid systems that are
stable but do not have a common Lyapunov function.

Multiple Lyapunov functions. This approach is based on constructing a separate
Lyapunov function for each continuous subsystem and restricting the systems
switching behaviour [Branicky, 1997, 1998, Žefran and Burdick, 1998, Michel,
1999, S.Pettersson and B.Lennartson, 1999, Lygeros and Sastry, 1999]. Usually,
in this approach it is required that the value of the Lyapunov function does not
increase every time the same subsystem is visited. In general it is not clear how
to check that the sequence is non-increasing. To solve the problem Koutsoukos
and Antsaklis [2002] constructs piecewise linear Lyapunov functions and Petters-
son and Lennartson [1996], Johansson and Rantzer [1998], Mignone et al. [2000]
construct piecewise quadratic Lyapunov functions.

Other approaches are Modifying Theorems, Poincaré mappings and Lagrange stabil-
ity [Hassibi et al., 1999]. For more information on these approaches and other hy-
brid stability issues see Kourjanski and Varaiya [1996], Ye et al. [1998], D.Liberzon
and A.S.Morse [1999], Michel [1999], Lygeros and Sastry [1999], DeCarlo et al. [2000],
Davrazos and Koussoulas [2001], Rubensson [2003].

53

i
i

i
i

i
i

i
i

4. S    

4.2 Notions of stability and hybrid stability

4.2.1 Stability of dynamical systems

Stability is a very important property in the design of dynamic systems. Intuitively,
stability means that small disturbances should not alter the system behaviour com-
pletely, i.e., small causes produce small effects. There are several slightly different
definitions of stability, based on this intuition.

We will settle for autonomous systems (or closed systems), i.e., complete systems,
where all behaviour is specified and the future of every trajectory is completely deter-
mined by its past [Polderman and Willems, 1998, p.67].

Let x = [x1, x2, . . . , xn]T (x ∈ Rn), let

ẋ = f(x, t) (4.2)

be a dynamical system and let xe be an equilibrium state of the system such that f(xe, t) = 0
for all t. We will denote the solution at t with given initial conditions x0 at t0 by
x(t; x0, t0).

Here we present one of the basic stability definitions from Willems [1970, p.3-12].

Definition 4.2.1 (Stability of equilibrium state). The equilibrium state xe, or the equi-
librium solution x(t) = xe, is called stable if for any given t0 and ε > 0, there exists a
positive δ(ε, t0) such that

‖x0 − xe‖ < δ =⇒ ‖x(t; x0, t0) − xe‖ < ε ∀ t > t0.

The equilibrium state is called unstable, if it is not stable. �

A detailed study of the stability of dynamical systems is given in Willems [1970].

4.2.2 Stability of hybrid automata

The notion of stability presented in Section 4.2.1 can be lifted to hybrid systems. In
the literature it is done in the several different ways, depending on the chosen hybrid
system model. In most cases, some kind of hybrid time trajectories are defined, and a
mapping from the hybrid time trajectories to the corresponding continuous state space
is defined. Then stability is defined on the set of such mappings.

In Ye et al. [1998] motions are introduced as a basis for hybrid dynamical systems and
then different types of stability are defined on the set of all motions and invariant sets.

For hybrid automata Lygeros et al. [2003], Simić et al. [2001] implicitly or explicitly
define hybrid time trajectories and hybrid traces (or executions). Then the stability is
defined on the set of all hybrid traces and an equilibrium or an invariant set, i.e.,
all hybrid traces should be stable w.r.t. an equilibrium, or in more general case, an
invariant set.

Since we investigate stability of hybrid automata, we will define hybrid traces for
it and base our stability definition on them.

Definition 4.2.2 (Hybrid trace). A hybrid trace of a hybrid automaton is an infinite or fi-
nite sequence of the form σ = x1e1x2e2 . . . xm−1em−1xm, with an associated monotonically
increasing time sequence τ0τ1 . . . τm (where τ0 = 0 and τi ∈ R ∪ {∞}), such that

54

i
i

i
i

i
i

i
i

4.3. E    

• Each ei is a transition from li to li+1;

• Each xi is a mapping from [τi−1, τi] to Rn satisfying d
dt xi = fli (xi);

• Initial (Init) and switching (Guard) constraints and assignments (Assign) are re-
spected, thus (l1, x1(0)) ∈ Init, and ∀ 1 6 i 6 m − 1 holds (ei, xi(τi)) ∈ Guard and
(ei, xi(τi), xi+1(τi)) ∈ Assign.

�

We will now extend the notion of stability from Section 4.2.1 to define stability of hybrid
automata. We start from more general multiple equilibria stability with potentially
different equilibria in each location.

Definition 4.2.3 (Multiple equilibria stability of hybrid automata). Let H be a hybrid
automaton with n locations and x∗1, x

∗

2, . . . , x
∗
n be equilibria for each location of the

hybrid automaton. The hybrid automaton H is called multiple equilibria stable iff for all
hybrid traces x1e1x2e2 . . . with the initial state x1(0) and l(xi) a location corresponding
to xi:

∀ε > 0∃δ > 0 ‖x1(0) − x∗l(x1)‖ < δ and ∀i∀t ∈ [τi−1, τi] holds ‖xi(t) − xl(xi)‖ < ε.

An automaton that is not stable is called unstable. �

In this study we will restrict to a simpler version of stability with a unique equilibrium
for all locations.

Definition 4.2.4 (Stability of hybrid automaton). A hybrid automaton is called stable
iff ∀ε > 0∃δ > 0 such that ‖x0

‖ < δ for all hybrid traces x1e1x2e2 . . . with x1(0) = x0 and
∀i∀t ∈ [τi−1, τi] : ‖xi(t)‖ < ε. An automaton that is not stable is called unstable. �

Definition 4.2.5 (Stable locations). We call a location of a hybrid automaton stable, if
dynamics in the location are stable. If all locations of an automaton are stable, we say
that the automaton has stable locations. �

Unfortunately, stable locations are not sufficient to make an automaton stable, see
Example 4.1.1. In Section 4.3 we demonstrate, how HA stability can be checked using
cycle detection and gains estimation.

4.3 Estimating stability of hybrid automaton

In this section we introduce a notion of contractive cycle and define stability criteria
based on the existence of such cycles. To check for non-contractive cycles we define
a gain automaton and modify a regular expression constructing from finite automata
algorithm to detect such cycles.

55

i
i

i
i

i
i

i
i

4. S    

4.3.1 Contractive cycles and stability of hybrid automaton

It does not come as a surprise that there are two potential instability sources in hybrid
automata. One of them are locations that can be unstable by itself (see Definition 4.1.1).
However, even stable locations are not sufficient to make an automaton stable, as
Example 4.1.1 shows. This second source of instability is related with cycles, one of
the principal sources of problems and elements of research in automata theory.

Any cycle is a potential source of instability that can be caused by switches and
locations that increase the norm of the state. To estimate contribution of switches and
locations to the instability we use gains.

Definition 4.3.1 (Symbolic gains). Let H be a hybrid automaton.
Let l be a location of H. Then a gain of location l is a ratio of the out-bound (a state

when a location is left) and the in-bound (a state when a location is entered) states

α∗l =

∥∥∥xl
out

∥∥∥∥∥∥xl
in

∥∥∥
where,

∥∥∥xl
in

∥∥∥ and
∥∥∥xl

out

∥∥∥ are norms of in-bound and out-bound states, respectively.
However, the norms depend on in-bound and out-bound states that are not statically
defined. Therefore we define a symbolic gain of location αl that is an upper bound for
all reachable in-bound and out-bound states, i.e., maximal α∗l for the location l.

Let e be a switch of H and (e, x, x′) ∈ Assign be a corresponding assignment. The
gain of switch e is a ratio of the norm of the state after and before taking the switch

α∗e =
‖x′‖
‖x‖

An assignment can be defined in such a way that x and x′ are not static, therefore
we define a symbolic gain of switch αe that is an upper bound for all reachable x and
x′. �

Further on we will use only symbolic gains of locations and switches, therefore we
will refer to symbolic gains just as gains, where it is clear from the context. Note that in
this definition we do not provide any procedure to estimate gains. The reason is that
it can be done in many different ways that best fit a particular setting. However, in
Section 4.4 we do propose one of such techniques.

If the symbolic gain of each location and switch that can be visited more than once
is less or equal to 1 and all locations are stable, then it is clear that hybrid automaton
is stable, because in a trace the number of locations and switches that are visited only
once is bounded, and the switches and locations that are visited more than once do
not destabilise the trace.

However, the above presented conditions are too restrictive, because the lower
gains can compensate for the higher gains, and thereby preserve stability. It is natural
that criteria for stability are based on cycles, because in an automaton with a finite
number of locations, locations are visited several times only if there are cycles in the
automaton. Therefore, we proceed with defining a particular type of cycles.

Definition 4.3.2 (Contractive cycle). Let H be a hybrid automaton, then a contractive
cycle of H is a sequence of transitions e1, e2, . . . , em such that ei is a transition from a
location li to a location li+1, and αe1 · αe1e2 · αe2 · αe2e3 · · · · · αem · αeme1 6 1. �

56

i
i

i
i

i
i

i
i

4.3. E    

Theorem 4.3.3. Let H be a hybrid automaton with stable locations. Then H is unstable, if it
has a non-contractive cycle.

The proof of Theorem 4.3.3 is available in Appendix A.1.
This theorem provides a sufficient condition for stability, namely the absence of

non-contractive cycles.

4.3.2 Gain automata and algorithm

'
&

$
%

l1

ẋ = A1x

'
&

$
%

l2

ẋ = A2x

'
&

$
%

l3

ẋ = A3x

'
&

$
%

l4

ẋ = A4x

.
..................

.................
................

................
..~a

.
...............

.
...

...............
................} c

@
@

@
@@R

b
�

�
�

��	

d

-e

6
f

Figure 4.4: Example of hybrid
automaton

nαa

nαb

nαc

nαd

nαe nαf

.
.......................*

αac�
��	

αad

�
��	 αbf

........................
..� αca

@
@@R

αcb

@
@@R

αde

-αef

6

αfc

.
......................................

.....................................

...................................

.................................
...............................

...�
αfd

Figure 4.5: Example of gain automaton

One location can have different symbolic gains depending on incoming and out-
going transitions (guards on transitions). Therefore, for non-contractive cycle calcula-
tions we transform a hybrid automaton into another type of automaton.

Definition 4.3.4 (Gain automaton). A gain automaton is a collection GA = (S,S0,G, g)
where

• S is the set of vertices.

• S0 is the set of initial vertices.

• G ⊆ S ×R+ × S is the set of edges labelled with gains.

• g : S→ R+ is the labelling function that assigns gains to vertices.

�

We construct gain automata from hybrid automata in a following way.

Definition 4.3.5 (Gain automaton of hybrid automaton). Let H be a hybrid automa-
ton. Then the gain automaton for H is defined by GAH = (SH,S0

H,GH, gH) where:

• The vertices of the gain automaton are the transitions of H, i.e., SH = E.

• The initial vertices of the gain automaton are the transitions from the initial
locations of H.

57

i
i

i
i

i
i

i
i

4. S    

• For every location l and for each pair of transitions e
−→ l e′
−→ in H there is an edge

e
αee′
−−→ e′ in GH, where αee′ is a symbolic gain of location l with in-bound transition

e and out-bound transition e′.

• The labelling function gH assigns a corresponding symbolic gain of switch αe to
every vertice of the gain automaton.

�

Example 4.3.6 (Gain automaton). Let H be a hybrid automaton from Figure 4.4. Then
the corresponding gain automaton GAH = (SH,S0

H,GH, gH), constructed from H, is
depicted in Figure 4.5. �

We define an algorithm for the detection of non-contractive cycles that operates on the
gain automaton. If such cycles are detected, then the corresponding hybrid automaton
with stable locations and continuous switching is unstable. The algorithm is inspired
by the well-known algorithm for transforming a finite automaton into an equivalent
regular expression [Floyd and Beigel, 1994, p.232–247], [Hopcroft et al., 2001, p.91–
101], [Linz, 2001, p.71–98]. The vertices of gain automaton are deleted successively
and the edges transformed. The main steps of the algorithm are the following:

OLD - NEW

(a) nαa nαb nαc-αab -αbc nαa nαc-αabαbαbc

(b) nαa nαb nαc-αab -αbc
�
αcb

nαa nαc-αabαbαbc
.......

.........
Y

αcbαbαbc

(c) nαa nαb
-αab
-

βab

nαa nαb-max(αab, βab)

Figure 4.6: Basic Steps of the Algorithm

Vertice elimination A vertice is eliminated. Each possible pair of an incoming and
outgoing edge of this vertice leads to a new edge, labelled with the product of
the symbolic gains, as depicted in Figure 4.6(a).

Double edge elimination If two edges have the same initial and final vertice they
are transformed into a single edge, labelled with the maximum of the symbolic
gains, as depicted in Figure 4.6(c)

Loop edge analysis It is possible that deleting a vertice creates a loop edge, as illus-
trated in Figure 4.6(b). If the symbolic gain of such loop edge multiplied by the
symbolic gain of the location is > 1 the algorithm is terminated. Otherwise, the
loop edge is removed.

Based on these steps we get Algorithm 4.1.

58

i
i

i
i

i
i

i
i

4.3. E    

� �
algorithm DetectStability(gain automata)
begin

while there is more that one state
forall loop edges

if a non−contractive loop is found
then return non−contractive loop detected;

end
end
eliminate a state ;
eliminate all resulting double edges;

end
forall loop edges /∗ for the last state ∗/

if a non−contractive loop is found
then return non−contractive loop detected;

end
end

end� �
Algorithm 4.1: Detection of hybrid automaton stability

Theorem 4.3.7. Let H be a hybrid automaton with stable locations, then Algorithm 4.1 detects
a non-contractive loop in GAH iff H contains a non-contractive cycle and inverse.

Proof. ⇒: Trivial since each non-contractive loop corresponds to a non-contractive
cycle.
⇐: Suppose there is a non-contractive cycle in H. Then in the gain automaton there

is a cycle, where the product of the symbolic gain labels is bigger that 1. Let’s call such
cycle a non-contractive gain cycle.

Each removal step in the algorithm preserves the existence of a non-contractive
gain cycle (see vertice elimination and double edge elimination steps). It holds for
loop edge elimination, since if a non-contractive gain cycle contains a contractive loop,
the the gain cycle without the contractive loop remains non-contractive.

At every step of the algorithm a non-contractive gain cycle remains present. Sup-
pose there is a non-contractive gain cycle. If it were not detected by the algorithm, then
the algorithm would produce a gain automaton with a single state and no transitions,
so not containing a non-contractive gain cycle. It contradicts the fact that at every
step the presence of a non-contractive gain cycle is preserved. Therefore if H has a
non-contractive cycle it will be detected by the algorithm. �

Complexity The number of vertices in GAH is equal to the number of transitions of
H. The number of edges in GAH is at most quadratic in the number of transitions of
H, but usually it is substantially lower. The complexity of Algorithm 4.1 is linear in
the number of GAH vertices. Therefore the complexity of Algorithm 4.1 in worst case
is quadratic in the number of H locations.

59

i
i

i
i

i
i

i
i

4. S    

4.3.3 Stability of two-dimensional linear continuous
hyperplane hybrid automaton

The proposed stability analysis procedure consists of two steps, i.e., estimating con-
servative gains (Section 4.4) and detecting non-contractive cycles (Section 4.3.2). The
estimation of gains will be defined for a specific type of hybrid automaton

Definition 4.3.8 (Linear continuous hyperplane HA). Let H be a hybrid automaton.
Then we call it Linear Continuous Hyperplane Hybrid Automaton(LCHHA), if it conforms
to the following requirements.

• Init = L′ ×Rn for L′ ⊆ L, i.e., we can start in any state of a given initial location.

• Inv maps each location to the condition true, i.e., there are no invariants. There-
fore transitions are never forced and it is allowed to stay in a location forever.
This item is not a restriction, but just a technical convenience.

• Dynamics in each location are linear, i.e., d
dt x = fl(x) = Alx, Al ∈ R

n×n.

• The guards are hyperplanes defined by equations of the form vT
e x = 0 for some

ve ∈ Rn.

• Assign does not alter the state, i.e., it is a hybrid automaton with continuous
switching. This condition reduces all symbolic gains of switches to 1. As a result,
they are omitted from further analysis.

�

Further on we restrict LCHHA to the two-dimensional continuous state space (X ⊆ R2)
and get a Two-dimensional Linear Continuous Hyperplane Hybrid Automaton (TLCHHA).
This restriction is related to the special properties of the gains calculation, which are
discussed in Section 4.4.

Remark 4.3.9. Linearity and hyperplanes restrictions enable a certain type of conser-
vative gains estimation procedure that is discussed in Section 4.4. �

Notice that Zeno behaviour is not possible if the guards on the incoming and out-
going switches are different. The system is required to progress from one hyperplane
to the other before switching. The amount of time that this takes is invariant under
scaling and is completely determined by the dynamics in the location and the angle
between the hyperplanes. Since the number of locations and the number of transitions
enabling guards is finite it follows that there exists a minimal dwell time.

4.4 Conservative estimation of gains

In this section we discuss conservative estimates of location’s gains via Lyapunov
functions.

60

i
i

i
i

i
i

i
i

4.4. C   

4.4.1 Gains

Calculation of gains is not trivial. Here we show how to estimate gains of locations of
LCHHA (Definition 4.3.8). We propose to use the worst case scenario, i.e., an upper-
bound that depends only on the particular location and corresponding incoming and
outgoing transitions.

In estimation of conservative gains we will take the advantage of the existence of a
Lyapunov function in each location. Lyapunov functions are real-valued functions of the
system’s state that are monotonically non-increasing.

Definition 4.4.1 (Lyapunov function). Let’s consider ẋ = f (x) where x ∈ Rn is a state
vector and f : Rn

→ Rn. Then a Lyapunov function is defined as a scalar function
V : Rn

→ R that has the following properties.

• V(0) = 0;

• It is positive definite, i.e., ∀‖x‖ , 0⇒ V(x) > 0;

• It is continuous and differentiable;

• Its derivative along every solutions of ẋ = f (x) is non-positive, so, it is non-
increasing.

�

Usually the following technique is used to construct Lyapunov functions for linear
systems (ẋ = Ax, x ∈ Rn). V(x) = xTPx is taken as a Lyapunov function candidate with
P a symmetric definite positive matrix (P > 0 and xTPx > 0 if x , 0). Then

V̇(x) = ẋTPx + xTPẋ = ẋTATPx + xTPAẋ = ẋT(ATP + PA)ẋ

and V(x) is a Lyapunov function iff exists P such that ATP + PA 6 0. See Polderman
and Willems [1998] for further details.

Definition 4.4.2 (Conservative gain). Let H be a TLCHHA with stable locations. With
each location l we associate a symmetric positive definite matrix Pl such that AT

l Pl +
PlAl 6 0. Let ein represent a transition to l and eout a transition from l and let Lin, given by
vT

inx = 0, and Lout, given by vT
outx = 0, denote the corresponding switching hyperplanes.

Define ellipsoids Ein = {x ∈ Lin | xTPlx = 1} and Eout = {x ∈ Lout | xTPlx = 1}. The
corresponding gain αin/out is defined as

αin/out = max
xi∈Ein,
xo∈Eout

xT
o xo

xT
i xi

.

Obviously, since V(x) = xTPlx is a Lyapunov function for d
dt x = Alx we have that

any trajectory that enters the location through Lin and leaves through Lout has the
ratio of the norms with upper bound

√
αin/out. Moreover, we use the square of the

Euclidean norm, because it does not change the ratio, however it is more convenient
technically. �

Now we have to sort out how to calculate a gain and how to choose Pl such that
the gain is minimal.

61

i
i

i
i

i
i

i
i

4. S    

4.4.2 Calculation of gains

x
1

x
2

v
in

v
out

L
in

L
out

Figure 4.7: The situation in a location

worst case Lyapunov
level curve

level curve
optimal Lyapunov

state trajectory

Figure 4.8: Level curves of the Lya-
punov functions

When Pl is given, the calculation of gain in two dimensions is rather simple. The
situation in a location is depicted in Figure 4.7. The switching lines are given by
vT

inx = 0 and vT
outx = 0. Let ṽin and ṽout be orthogonal to vin and vout respectively. Then

we get

αin/out =
ṽT

outṽout

ṽT
inṽin

ṽT
inPlṽin

ṽT
outPlṽout

. (4.3)

If ṽin and ṽout are on the same level curve, then Equation (4.3) reduces to

αin/out =
ṽT

outṽout

ṽT
inṽin

. (4.4)

Remark 4.4.3 (Restriction to two dimensions). Restriction to two dimensions arises
from the specifics of gains estimation in the higher dimensions. For example, if
n = 3, then incoming and outgoing hyperplanes are two-dimensional planes passing
through the origin and they cut the ellipsoid into ellipses, which intersect at the hyper-
planes intersection line. Since maximisation of the outgoing state and minimisation
of the incoming state come into play, we get that the gain is always > 1, because the
incoming state is less or equal to the state of intersection and the outgoing state is
more or equal to the state of intersection. Therefore the ratio of the outgoing and
incoming states is always more or equal to 1. Figure 4.9 gives some insight on the
situation. �

62

i
i

i
i

i
i

i
i

4.4. C   

Figure 4.9: Gain estimation in three dimensions

4.4.3 Optimising the Lyapunov function choice

Stability indication provided by gains depends on the chosen Lyapunov functions
in locations. These functions can fit trajectories better or worse. The better it fits the
trajectory, the less conservative is the gain. Because Lyapunov functions are not unique,
procedures to choose the better ones should be provided. We present a procedure for
linear dynamics given by a stable matrix and quadratic Lyapunov functions.

We demonstrate the need for optimisation and the difference between loose and
tight level curves in an example and Figure 4.8. Some theoretical results on the
optimisation of Lyapunov functions choice are provided in Appendix A.2.

Example 4.4.4. This example is taken from Langerak et al. [2003a]. Let the dynamics
in a location be given by d

dt x = Ax, where

A =
[

0 1
−2 −3

]
.

The switching lines are given by Lin = λain = λ[0 1]T,Lout = λaout = λ[1 0]T. Then, for
a given Lyapunov function V(x) = xTPx the gain is

αP =
aT

outaout

aT
inain

aT
inPain

aT
outPaout

63

i
i

i
i

i
i

i
i

4. S    

Let p22 and p11 are numerator and denominator of the resulting fraction, respectively.
Then to find the optimal Lyapunov function we minimise αP over the set of level
curves (see Definition 4.4.2). In this example it amounts to the minimisation of 1

p11
or,

equivalently, maximisation of p11. Existence of the optimum is guaranteed by Theo-
rem A.2.3. Extreme Lyapunov functions, minimising and maximising αP respectively,
are

Pmin =

[
12.7 2.59
2.59 1

]
Pmax =

[
0.32 0.41
0.41 1

]
and the corresponding minimum and maximum values of the gains are

αmin ≈ 0.38 αmin ≈ 2.61.

Level curves and the phase portrait of d
dt x = Ax are depicted in Figure 4.8. �

4.5 Conclusions

In this chapter we presented a hybrid automaton stability estimation procedure that
was produced as a result of cooperation between computer scientists and control
theorists. We present an elegant and relatively simple technique that not only provides
an algorithm for stability estimation for a certain class of automata, but also illustrates
the reuse of well known efficient techniques from both areas.

The results can be generalised to include invariants, because it was introduced
as a technical convenience. Potentially, the results can be extended for the higher
dimensions number. However, in the meanwhile we do not know or anticipate such
procedure.

Furthermore, we believe that the results can inspire some analogue research, where
well known properties of automata are exploited.

64

i
i

i
i

i
i

i
i

An old man set out to go into the woods, although
he didn’t know what for. Then he came back and
said:
– Hey, old woman, you!
The old woman fell straight down. Since then, the
hares are white in winter.

Daniil Kharms

5
Behavioural Hybrid Process Calculus

5.1 Introduction

The growing interest in hybrid systems both in computer science and control theory
has generated a new interest in models and formalisms that can be used to specify
and analyse such systems. A prominent framework for hybrid systems is provided
by the family of hybrid automata models (hybrid automata (Section 3.3.6), hybrid
behavioural automata (Section 3.3.7) and hybrid input/output automata (Section 3.3.8)).
More recently process algebraic models have been put forward as a vehicle for the
study of hybrid systems (Section 3.3.9).

Process algebra [Milner, 1989, Hoare, 1985, Bergstra and Klop, 1984, Bolognesi and
Brinksma, 1987] is a theoretical framework for the modelling and analysis of the be-
haviour of concurrent discrete event systems that has been developed within computer
science in the past quarter century. It has generated a deeper understanding of the
nature of concepts such as observable behaviour in the presence of non-determinism,
system composition by interconnection of concurrent system components, and notions
of behavioural equivalence of such systems. It has contributed fundamental concepts
such as bisimulation, and has been successfully used in a wide range of problems and
practical applications in concurrent systems. We have illustrated the basic ingredients
of process algebra in Section 3.3.9.

We believe that the basic tenets of process algebra are highly compatible with
the behavioural approach to dynamical systems [Polderman and Willems, 1998] (Sec-
tion 5.2). In this chapter we present an extension of classical process algebra that is
suitable for the modelling and analysis of continuous and hybrid dynamical systems
that can be seen as a generalisation of the behavioural approach in a hybrid setting. It
provides a natural framework for the concurrent composition of such systems, and can
deal with non-deterministic behaviour that may arise from the occurrence of internal
switching events. Standard process algebraic techniques lead to the characterisation of

65

i
i

i
i

i
i

i
i

5. B H P C

the observable behaviour of such systems as equivalence classes under some suitably
adapted notion of bisimulation, yielding a potentially interesting mathematical inter-
pretation of the notion of hybrid behaviour. A technical advantage of our approach
is that, in contrast to Cuijpers and Reniers [2003] and Bergstra and Middelburg [2005]
strong bisimulation is a congruence relation with respect to the parallel composition
of subsystems1, i.e., substitution of a subsystem by a bisimilar subsystem does not
affect the behaviour of the composition.

We propose a process algebraic calculus that extends the standard repertoire of
operators that combine discrete functional behaviour with features to also represent
and compose continuous-time behaviour.

As mentioned above, we are inspired by the so-called behavioural approach to
dynamic systems due to Polderman and Willems [1998]. In control theory, which is
the relevant context in our case, the traditional presentation of dynamic behaviour,
assumes a number of continuous-time input and output variables, whose evolution,
respectively, influences and depends on the evolution of state variables. This evolution
is typically defined in terms of differential equations.

Although in practice most dynamical systems are ultimately described in this for-
mat, Willems’ behavioural approach starts from a more general point of view. System
behaviour is characterised by a time-dependent relation between the observable or
manifest variables of a system. Input and output become derived notions that depend
on the constraints that the overall relation imposes on the individual variables. Thus
behaviour can be simply seen as the set of all allowed real-time evolutions, or trajec-
tories, of the system variables. We provide some technical details of the behavioural
approach in Section 5.2.

The notion of input and output as derived concepts is also well-known in process
algebras with communication based on (symmetric) instantaneous synchronisation. It
suggests that communication on continuous-time variables can be achieved by non-
instantaneous synchronisation on (parts of) trajectories. This leads to a calculus of
actions, for discrete behaviour, and trajectories, for continuous-time behaviour. As
we will see, the calculus does not depend upon any particular representation of sets
of allowed trajectories: it simply defines the behaviour of composed, hierarchical
systems in terms of the allowed actions and trajectories of its component systems.
This leads to a natural separation of concerns in which control theory is used to
determine qualitative properties of dynamical behaviour (e.g., stability, controllability,
etc.), and the proposed calculus describes how these propagate under complex system
compositions.

Based on the above approach, this chapter introduces the concept of hybrid tran-
sition systems and defines the related notion of strong (hybrid) bisimulation that
captures a natural notion of equivalent behaviour. This leads to a branching-time
interpretation of hybrid behaviour, in which behaviour is not characterised by sets of
trajectories and action traces, but by tree-like structures that capture also the moments
in time when a choice between alternative behaviours exists.

Subsequently, a basic language for the construction of hybrid transition systems is
defined. The syntax of the language is presented and its operators are explained.

1In Cuijpers and Reniers [2003], the robust and stateless bisimulations are however congruent.

66

i
i

i
i

i
i

i
i

5.2. B 

5.2 Behavioural approach

The behavioural approach [Polderman and Willems, 1998] is a prominent paradigm in
systems and control theory. In this approach the mathematical model is considered to
be a subset of a universum of possibilities. It restricts the world of all possible outcomes
to a convenient model of reality. The subset of outcomes is called the behaviour of the
model. Formally, the mathematical model is defined as follows [Polderman and
Willems, 1998, p.3].

Definition 5.2.1 (Mathematical model). A mathematical model is a pair (U,B) with
U a set, called the universum with elements called outcomes and B ⊆ U, called the
behaviour. �

Usually models are described by equations.

Definition 5.2.2 (Behavioural equations). Let U be a universum, E a set, and f1, f2 :
U → E. The mathematical model (U,B) with B =

{
u ∈ U | f1(u) = f2(u)

}
is said to be

described by behavioural equations and is denoted by
(
U,E, f1, f2

)
. The set E is called

the equation space. We also call
(
U,E, f1, f2

)
a behavioural representation of (U,B). �

In this context dynamical systems are defined as follows [Polderman and Willems,
1998, p.8].

Definition 5.2.3 (Dynamical system). A dynamical system Σ is defined as a triple Σ =
(T,W,B) with T ⊆ R, called the time axis,W a set called the signal space, andB ⊆ T→
W called the behaviour. �

The set T specifies the set of time instances relevant to a problem, therefore it can be
R for continuous-time systems and Z for discrete-time systems.

A behaviourB is a family of time trajectories taking their values in the signal space,
the collection of all possible trajectories

B = {w : T→W | w is compatible with the laws that govern the system Σ}.

where laws are usually expressed by the behavioural expressions.
Usually, in modelling additional variables are used. In behavioural approach they

are called latent variables. The dynamical systems model (Definition 5.2.3) is easily
extended with latent variables [Polderman and Willems, 1998, p.10].

Definition 5.2.4 (Dynamical system with latent variables). A dynamical system with la-
tent variables is defined as ΣL =

(
T,W,L,B f

)
withT ⊆ R the time-axis,W the (manifest)

signal space, L the latent variable space, and B ⊆ (W × L)T the full behaviour. It de-
fines a latent variable representation of the manifest dynamical system Σ = (T,W,B) with
(manifest) behaviour B = {w : T→W | ∃l : T→ L such that (w, l) ∈ B f }. �

The manifest variables can be thought of as external or observable. In contrast, the latent
variables are implicit, observable only through the manifest variables.

Latent variables are frequently used in modelling, e.g., to represent internal cur-
rents and voltages in electrical circuits to express ports behaviour; as state variables
in control theory to express the memory; as the basic probabilistic space in probability
theory and many more.

67

i
i

i
i

i
i

i
i

5. B H P C

The behavioural approach also provides techniques for building larger systems
from smaller ones. In Polderman and Willems [1998] it is used to build the system
from the plant and the controller, but we believe that the technique is general enough
to be used for building bigger systems from the components, i.e., to build the plant
and the controller itself from the smaller components.

Interconnection of two dynamical systems is defined as follows.

Definition 5.2.5 (Interconnection). Let Σ1 = (T,W,B1) and Σ2 = (T,W,B2) be two
dynamical systems with the same time-axis and the same signal space. The intercon-
nection of Σ1 and Σ2 denoted by Σ1 ∧ Σ2, is defined as

Σ1 ∧ Σ2 = (T,W,B1 ∩ B2) .

�

The behaviour of the interconnection consists simply of those trajectories w : T→W
that are compatible with the laws of both Σ1 (i.e., w belongs to B1) and of Σ2 (i.e., w
belongs also to B2). Thus in the interconnected system, the trajectories that can be
generated must be acceptable to both Σ1 and Σ2.

Combining it with extensions from Julius [2005] it is possible to construct complex
systems from the components, or, as it is explained in Polderman and Willems [1998,
p.366–368] and Julius [2005, p.71–122], to use it as a control in the behavioural context.

More results and details on the behavioural theory and its application to hybrid
systems is available in Polderman and Willems [1998], Julius [2005].

5.3 Trajectories

Several different notions of trajectories are available in the literature. Lynch et al.
[2003] introduces general trajectories and related operations (e.g., concatenation, re-
striction). Lygeros et al. [1999] introduces hybrid time trajectories and executions to define
hybrid evolution. We define different version of trajectories and related operation that
comply better with the behavioural approach [Polderman and Willems, 1998]. More-
over, we define operations (some of them just for technical convenience) for parallel
composition of trajectories.

We assume that trajectories are defined over time intervals (0, t] (where t can be∞)
and map to a signal space to define the evolution of the system. Components of the
signal space correspond to the different aspects of the continuous-time behaviour, like
temperature, pressure, etc. They are associated with trajectory qualifiers that identify
them.

Definition 5.3.1 (Signal space). LetW be a set of signal domains (typically ⊆ R) and T
be a set of trajectory qualifiers. A signal space is a pair

W =
(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
with Wi ∈ W, qi ∈ T , where qi denotes the trajectory qualifier of Wi, and qi , q j for
i , j, i.e., all Wi have different trajectory qualifiers. �

68

i
i

i
i

i
i

i
i

5.3. T

Example 5.3.2 (Signal space). A bouncing ball is a simple example of a hybrid system
(Example 2.2.1). The altitude of the ball is h, v is the vertical speed, and c is a coefficient
for the energy loss.

To define dynamical behaviour of ball we can use the following signal space:

WBB =
(
R+ ×R,

(
Altitude,Velocity

))
where qualifiers Altitude and Velocity refer to the altitude of ball (inR+) and the vertical
speed (in R), respectively. �

Usually trajectories are defined over infinite time intervals. However, hybrid
systems often evolve according to some trajectory only for a certain period of time.
The restriction to interval (0, t] allows to define such evolutions. There are two reasons
for the choice of such type of intervals. It is convenient technically. Moreover, it most
accurately reflects the reality. An evolution starts at a certain time with a certain state,
and the first change occurs in the left limit. Consequently, the evolution stops at a
certain time moment with a certain state.

Definition 5.3.3 (Trajectory). Let W =
(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
be a signal space.

Then a trajectory in signal spaceW is a function

ϕW : (0, t]→W1 × · · · ×Wn (5.1)

where t ∈ R+ is the duration of the trajectory, also denoted as t(ϕ). We will omit
subscriptWwhen a signal space is clear from the context. �

Furthermore, we will allow infinite trajectories, but with certain limitations.
We extend the definition of trajectories with an empty trajectory.

Definition 5.3.4 (Empty trajectory). We will use ε to denote an empty (or a completed
trajectory). �

We will introduce more properties of the empty trajectory later in this prefix, e.g., it is
an a neutral element of concatenation (Definition 5.3.11).

Definition 5.3.5 (Set of trajectory qualifiers). A function T : Φ → T , where Φ is a set
of any trajectories and T is a set of qualifiers, collects all trajectory qualifiers of the
trajectory:

T(ϕW) =
{q | ϕW : (0,u]→W1 × · · · ×Wn

∧W =
(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
∧ q ∈ {q1, . . . , qn}}.

We will define type of ε in such a way that ∀ϕ , ε T(ϕ) = T(ε). �

Remark 5.3.6 (Type of empty trajectory). We want empty trajectory to comply with
every type of trajectory for the technical convenience. Therefore in the last sentence of
Definition 5.3.5 we add such requirement. However, a different choice can be made,
where empty trajectory has type that is different from all other types. �

69

i
i

i
i

i
i

i
i

5. B H P C

Notation 5.3.7. We will use Φ to denote a set of trajectories. Usually, we will require
that all trajectories (except the empty trajectory) in the set evolve in the same signal
space (have the same trajectory qualifiers, i.e., formally ∀ϕ,ψ , ε ∈ Φ T(ϕ) = T(ψ)).
We will mention explicitly, if it is not the case. We will allow infinite trajectories in Φ.

For brevity reasons instead of writing ϕ � (0, t] we will write ϕ � t, where ϕ is a
trajectory and � t is a restriction of a function (sometimes denoted |t). �

Definition 5.3.8 (Projection). Let ϕ : (0,u] → W1 × · · · ×Wn be a trajectory, such that
W =

(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
. Then a projection of the trajectory w.r.t. a trajectory

qualifier qi (i = 1, . . . ,n) is the trajectory

πqi (ϕ) : (0,u]→Wi

in signal spaceWi =
(
Wi, qi

)
. �

Remark 5.3.9 (Extended projections). Let

ϕ : (0,u]→W1 × · · · ×Wn

be a trajectory inW =
(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
and let T ′ ⊆ T(ϕ). Then we extend

the projection for a set of trajectory qualifiers

πT
′

(ϕ) : (0,u]→W′

1 × · · · ×W′

m

such thatWT ′ =
(
W′

1 × · · · ×W′
m ,

(
q′1, . . . , q

′
m

))
, {q′1, . . . , q

′
m} = T

′ and ∀qi ∈ T
′ πqi (ϕ) =

πqi (πT
′

(ϕ)). �

Example 5.3.10 (Trajectories and projections). LetWBB =
(
R+ ×R,

(
Altitude,Velocity

))
be a signal space for the bouncing ball (Example 5.3.2). Then the trajectory for the
bouncing ball can be defined as a mapping

ϕ : (0, t]→ R+ ×R

and, e.g., given as

d
dt
πAltitude(ϕ) = πVelocity(ϕ)

d
dt
πVelocity(ϕ) = −g

with initial values πAltitude(ϕ)(0) = h0 and πVelocity(ϕ)(0) = v0, respectively. �

If the signal types of two trajectories coincide, they can be concatenated to one trajec-
tory, which is not necessarily smooth.

Definition 5.3.11 (Concatenation of trajectories). Let ϕ : (0, t]→W1 × · · · ×Wn (where
t , ∞) and ψ : (0,u] → W1 × · · · ×Wn be trajectories. The concatenation of ϕ and ψ is
given by the trajectory

φ;ψ : (0, t + u]→W1 × · · · ×Wn

70

i
i

i
i

i
i

i
i

5.3. T

�

�

�
;

�

Figure 5.1: Concatenation

defined by

ϕ ; ψ(t′) =

ϕ(t′), 0 < t′ 6 t
ψ(t′ − t), t < t′ 6 t + u

Moreover, ε is a neutral element in the concatenation, i.e., for all Φ, ϕ ∈ Φ ε ;ϕ = ϕ =
ϕ ; ε. �

Example 5.3.12 (Concatenation). Let ϕ and ψ be trajectories depicted by the solid and
dashed lines on the left side of Figure 5.1, respectively. Then the concatenation ϕ ;ψ is
a trajectory depicted on the right side of Figure 5.1 by a dotted line. �

�

�

� � �

Figure 5.2: Time-shift

For the sake of convenience, a time-shift operation is defined. It displaces a trajectory
to “the left” by some time. An example of the time shift by ∆ time units is presented in
Figure 5.2. The figure on the left side represents the original function, and the figure
on the right side represents the function after the time-shift.

Definition 5.3.13 (Time-shift). LetΦbe a set of trajectories andϕ : (0, t]→W1×· · ·×Wn
be a trajectory. Then the time-shift operator

↑ : Φ ×R>0 → Φ

is defined for t′ < t as follows:

ϕ ↑ t′ : (0, t − t′]→W1 × · · · ×Wn such that ∀u ∈ (0, t − t′] ϕ ↑ t′ (u) = ϕ(t′ + u).

�

71

i
i

i
i

i
i

i
i

5. B H P C

If one trajectory coincides on the signal space with the initial part of another trajectory,
it is called a prefix of this trajectory.

Definition 5.3.14 (Prefix of trajectory). Let ϕ : (0, t] → W1 × · · · ×Wn and ψ : (0,u] →
W1 × · · · ×Wn be trajectories, such that t 6 u. Then ϕ is a prefix of ψ (denoted ϕ � ψ),
if ϕ = ψ � t. Furthermore, if ϕ � ψ and t < u, then ϕ is called a strict prefix of ψ and
denoted ϕ ≺ ψ. �

We define a set of trajectories prefixes and a closure of such set.

Definition 5.3.15 (Set of trajectories prefixes). Let Φ be a set of trajectories such that
∀χ, κ ∈ Φ T(χ) = T(κ). Then a set of trajectories prefixes is defined as follows Pref≺(Φ) =
{ϕ | ∃ψ ∈ Φ, ϕ ≺ ψ} \Φ. We will define a set of trajectories prefixes minus empty trajectory
as Pref+ = Pref≺(Φ) \ ε. �

Definition 5.3.16 (Set of trajectories prefixes closure). Let Φ (∀ϕ,ψ ∈ Φ T(ϕ) = T(ψ))
be a set of trajectories. A set that includes all behaviours from Φ and all prefixes of the
behaviours from the Φ can be defined as follows Φ = Φ ∪ Pref≺(Φ). We will define a
set of trajectories closure minus empty trajectory and minus infinite trajectories as follows

Φ
+
= {ϕ | ∃ψ ∈ Φ, ϕ ≺ ψ, t(ϕ) , ∞} \ ε

�

As a supplement to the trajectory prefix, we introduce a notion of trajectory contin-
uation, the remainder of the taken trajectory.

Definition 5.3.17 (Trajectory continuation). Let ϕ : (0, t] → W1 × · · · × Wn and ψ :
(0,u] → W1 × · · · ×Wn be trajectories such that ψ ≺ ϕ. Then we define a trajectory
continuation of ϕ after taking ψ

ϕ\\ψ : (0, t − u]→W1 × · · · ×Wn,

such that
ϕ\\ψ = ϕ ↑ u.

�

Trajectory continuations define the remainder of the taken trajectory. A generalised
version of it, a set of trajectory continuations, singles out a subset of trajectory continua-
tions, i.e., all remainders from the set of trajectories, which have the same initial part.

Definition 5.3.18 (Set of trajectory continuations). Let Φ be a set of trajectories such
that ∀χ, κ ∈ Φ T(χ) = T(κ) and ψ be a trajectory or trajectory prefix of some trajectory
belonging to the set. Then a set of trajectory continuations for ψ is defined as follows

Φ\\ψ = {ϕ | ψ ; ϕ ∈ Φ}

�

72

i
i

i
i

i
i

i
i

5.3. T

�

Figure 5.3: Set of continuations

Example 5.3.19 (Set of trajectory continuations). Let us have a set of trajectories de-
picted on the left side of Figure 5.3, consisting of 5 trajectories, that coincide until
certain moment. Let us take the prefix of trajectory, depicted by the solid line, of
duration ∆. Then the set of trajectory continuations for this prefix will include all
continuations depicted on the right side of Figure 5.3. �

Definition 5.3.20 (Partial prefix). Let H be a set of trajectory qualifiers, and let ϕ :
(0, t]→W1×· · ·×Wn inW =

(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
andψ : (0,u]→W′

1×· · ·×W′
m in

W′ =
(
W′

1 × · · · ×W′
m,

(
q′1, . . . , q

′
m

))
be trajectories, such that t 6 u. LetT = T(ϕ)∩T(ψ) ⊆

H.

• Trajectory ϕ is a partial prefix of ψ (denoted ϕ �H ψ), if πT (ϕ) = πT (ψ � t).

• Ifϕ �H ψ and t < u, thenϕ is called a strict partial prefix ofψ and denotedϕ ≺H ψ.

• In case of t = u the trajectories are equal on the coinciding trajectory qualifiers
and are called partially equal (denoted ϕ =H ψ).

�

The partial prefix relaxes requirements put by the prefix (Definition 5.3.14), i.e., only
the projections over coinciding trajectory qualifiers are compared.

Example 5.3.21 (Partial prefix). Let us have two trajectories, which define the (altitude,
velocity) and (altitude, temperature) pairs, respectively. Then one of these trajectories
is a partial prefix of another, if the altitude evolves in the same way. It allows to define
different aspects of the same object separately and then compose definitions to get a
complete specification of the object. �

Based on synchronising trajectory qualifiers, two trajectories can be composed cre-
ating a new, “wider”, trajectory, such that evolutions of coinciding trajectory qualifiers
are merged and non-coinciding parts extend the state space.

Definition 5.3.22 (Composition of trajectories). Let H be a set of synchronising trajec-
tory qualifiers, and let ϕ : (0, t]→W′′

1 × · · · ×W′′

k inW =
(
W′′

1 × · · · ×W′′

k ,
(
q′′1 , . . . , q

′′

k

))
and ψ : (0,u] → W′

1 × · · · × W′
m in W′ =

(
W′

1 × · · · ×W′
m,

(
q′1, . . . , q

′
m

))
be trajectories

73

i
i

i
i

i
i

i
i

5. B H P C

such that T(ϕ)∩ T(ψ) ⊆ H, πT(ϕ)∩T(ψ)(ϕ) = πT(ϕ)∩T(ψ)(ψ) and u 6 t. Then a composition of
trajectories is a trajectory

ϕ ×H ψ : (0,u]→W1 × · · · ×Wn

inW =
(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
such that

T(ϕ ×H ψ) = T(ϕ) ∪ T(ψ),

πT(ϕ)(ϕ ×H ψ) = ϕ,

πT(ψ)(ϕ ×H ψ) = ψ.

�

We extend composition of trajectories to composition of sets of trajectories.

Definition 5.3.23 (Composition of sets of trajectories). Let H be a set of synchronising
trajectory qualifiers, and let Φ andΨ be sets of trajectories such that, ∀ϕ,ψ ∈ Φ T(ϕ) =
T(ψ), ∀ϕ,ψ ∈ Ψ T(ϕ) = T(ψ) and ∀ϕ ∈ Φ,∀ψ ∈ Ψ holds T(ϕ) ∩ T(ψ) ⊆ H. Then a
composition of sets of trajectories is a defined as follows

Φ ×H Ψ = {ϕ ×H ψ | ϕ ∈ Φ ∧ ψ ∈ Ψ ∧ ϕ =
H ψ ∧ πT(ϕ)∩T(ψ)(ϕ) = πT(ϕ)∩T(ψ)(ψ)}

Moreover, if ε ∈ Φ ∨ ε ∈ Ψ, then ε ∈ Φ ×H Ψ. �

Several different ways will be used to define sets of trajectories. We will require that
all the trajectories in the set have the same qualifiers, i.e., ∀ϕ,ψ ∈ Φ T(ϕ) = T(ψ).

• By listing all trajectories belonging to the set: Φ = {ϕ1, . . . , ϕn} such that ∀i, j =
1, . . . ,n T(ϕi) = T(ϕ j).

• By putting restrictions on the already existing set of trajectories: Φ ↓ Pred = {ϕ ∈
Φ | Pred(ϕ)}, where Pred is a predicate.

• Sometimes it is useful to define conditions on the end-points of trajectories or the
exit conditions. We will use ⇓ to denote such conditions, as the restrictions on set
of trajectories: Φ ⇓ Predexit = {ϕ : (0,u]→W1 × · · · ×Wn ∈ Φ | Predexit(ϕ(u))}. It is
illustrated in Section 5.8, where, e.g., in Example 5.8.1 h = 0 specifically requires
that the trajectory finishes at 0 altitude.

Moreover, an empty trajectory ε will denote an instantaneous exit availability.

When it is clear from the context, we will use trajectory qualifiers to access correspond-
ing parts of trajectories, e.g., qi will mean the same as πqi (ϕ) (i = 1 . . . n) for

ϕ : (0, t]→W1 × · · · ×Wn withW =
(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
.

Furthermore, will use qi instead of πqi (ϕ)(u) with u ∈ (0, t] as a time, when it is clear
from the context, e.g., as it is used in definition of Predexit. Moreover, the combination
of different conditions is allowed

Φ ↓ Pred ⇓ Predexit = {ϕ : (0,u]→W ∈ Φ | Pred(ϕ) ∧ Predexit(ϕ(u))}

74

i
i

i
i

i
i

i
i

5.4. H  

5.4 Hybrid transition systems

Automata, state-transition diagrams and other similar models are often used to de-
scribe the dynamic behaviour of the systems. They consist of states s ∈ S (with S as
a set of states) and some construct, defining changes of the states. Most of the time
changes of the states are defined by transitions, which are given as a relation (function)
over a subset of the Cartesian product of the states (S × S). Usually transitions are
denoted by an arrow, e.g., (s, s′) ∈→ or s→ s′.

Labelled transition systems is a class of transition systems, where transitions are
labelled with some actions a ∈ A (whereA is a set of actions). The transition relation
is defined over subset of S ×A × S. For (s,a, s′) ∈→we write s a

−→ s′.
A hybrid transition system is a labelled transition system with two types of transi-

tions.

Definition 5.4.1 (HTS). A hybrid transition system is a tuple HTS = 〈S,A,→,W,Φ,→c〉,
where

• S is a state space;

• A is a set of (discrete) action names;

• →⊆ S ×A × S is a (discrete) transition relation;

• W is a signal space;

• Φ is a set of trajectories ϕ : (0, t]→W1 × · · · ×Wn for t ∈ R+, and t , ∞, ε < Φ;

• →c⊆ S ×Φ × S is a (continuous-time) transition relation.

We will write

s a
−→ s′ ⇐⇒ (s,a, s′) ∈→

s
ϕ
−→ s′ ⇐⇒ (s, ϕ, s′) ∈→c .

The set of discrete action names includes a silent action, denoted τ. It does not represent
a potential communication and is not directly observable. Silent action may be used
to specify a non-deterministic behaviour2 (as internal actions in Milner [1989, p.37–
43]). �

Remark 5.4.2. Constraints ε < Φ and ∀ϕ ∈ Φ, t(ϕ) , ∞ just mean that we will not have
infinite or empty transitions. But we will be able to construct infinite evolutions by
concatenating finite trajectories. And ε is used to denote completed trajectories. �

Notation 5.4.3. We will adhere to a certain notation.

• Greek alphabet symbols (like ϕ,ψ) will be used to denote trajectories, which are
taken on a continuous-time transition.

• Latin alphabet (like a,b) will be used to denote actions.

�

2Of course, it is not the only way to model nondeterminism, e.g., nondeterministic choice operator can
be defined, it can be created by parallel composition.

75

i
i

i
i

i
i

i
i

5. B H P C

Definition 5.4.4 (Density). We will require density for all trajectories

∀ϕ1, ϕ2 : ϕ = ϕ1 ; ϕ2 ∧ s
ϕ
−→ s′ ⇐⇒ ∃s′′ : s

ϕ1
−→ s′′ ∧ s′′

ϕ2
−→ s′.

�

This requirement allows us to split every trajectory into arbitrarily many parts. More-
over, in such a case the set of trajectories Φ is prefix and suffix closed.

Remark 5.4.5 (Labels of continuous-time transitions). Label ϕ in s
ϕ
−→ s′ is a semantic

object, viz. the set theoretic graph of the function ϕ. �

5.4.1 Bisimulation

��
��
Off ��

��
On

.zon

..y off
.

.
.......
........

� on

��
��
Off1 ��

��
On ��

��
Off2

.zon

..y off
.zoff

..y on

.

...................

................

.............
..........

................

.

................

..............
...........
.........
.......

?
on

Figure 5.4: Two bisimilar automata

One of the main tools to compare systems is strong bisimulation. The bisimulation
for continuous dynamical systems is presented in van der Schaft [2004]. The process
algebraic version is nicely explained in Milner [1989]. Strong bisimulation requires
both subsystems to be able to imitate each other at every step.

Example 5.4.6 (Bisimulation). We illustrate bisimulation with an example of two au-
tomatic light switches, depicted in Figure 5.4. In the figure circles represent states
and arrows represent switches. Both automata represent two slightly different light
switches.

The upper automaton represents a one button light switch. Let assume that the
system is in the state Off. When the on is executed, the system changes to the state
On. After a while the light goes off by executing off. If the light is on and the action
on is executed, the light stays on.

The lower automaton represents a somehow complicated light switch that has two
off states Off1 and Off2, and when the light switches off, it may go to any of them.
However, it exhibits the same observable behaviour, i.e., its observable reaction to
actions on and off is the same.

It is easy to see that the states On of both automata are equivalent, and the states
Off1 and Off1 of the lower automaton are equivalent to the state Off of the upper
automata. Then we get the following bisimulation relation

R =
{(

Onu,Onl
)
,
(
Offu,Offl

1

)
,
(
Offu,Offl

2

)}
where superscripts u and l denote the upper and lower automata, respectively. �

76

i
i

i
i

i
i

i
i

5.5. L   

A strong bisimulation for hybrid transition systems requires both systems to be able
to execute the same trajectories and actions and to have the same branching structure.

Definition 5.4.7 (Hybrid strong bisimulation). A binary relationR ⊆ S×S on the states
is a hybrid strong bisimulation, if for all p, q ∈ S, such that p R q, holds

p a
−→ p′ =⇒ ∃q′ such that q a

−→ q′ and p′ R q′

q a
−→ q′ =⇒ ∃p′ such that p a

−→ p′ and p′ R q′

p
ϕ
−→ p′ =⇒ ∃q′ such that q

ϕ
−→ q′ and p′ R q′

q
ϕ
−→ q′ =⇒ ∃p′ such that p

ϕ
−→ p′ and p′ R q′.

�

The first two statements define bisimulation requirements for the discrete actions, and
the last two for the continuous-time transitions.

Definition 5.4.8 (Bisimilarity). States p and q are bisimilar (denoted p ∼ q), if there
exists a hybrid strong bisimulation R, containing the pair (p, q). �

5.5 Language and operational semantics

5.5.1 Language

To define evolution and interaction of systems, a language and its semantics, based on
hybrid transition systems are introduced. The syntax of language is presented in BNF
notation (Backus-Naur form).

B ::= 0 a.B
[

f | Φ
]
.B

∑
i∈I

Bi B ‖HA B new w.B B [σ] P

• 0 is a deadlock, the process that does not show any behaviour.

• a.B is an action prefix, where a ∈ A is a discrete action name and B is a process.
It first performs a and then engages in B. An action prefix denotes a discrete
transition in the underlying hybrid transition system.

•
[

f | Φ
]
.B

(
f
)

is a trajectory prefix, where f is a trajectory variable and Φ is a set of
trajectories. It takes a trajectory or a prefix of a trajectory in Φ. If a trajectory or
a part of it was taken and there exists a continuation of the trajectory, then the
system can continue with a trajectory from the trajectory continuations set. If a
whole trajectory was taken, then the system may continue with B, too.

•
∑
i∈I

Bi is a choice of processes. To generate the set we allow arbitrary index sets I.

It chooses before taking an action prefix or trajectory prefix. Binary version of
choice is denoted B1 + B2.

77

i
i

i
i

i
i

i
i

5. B H P C

• B ‖HA B is a parallel composition of two processes with an interconnection set H and a
synchronisation set A. The interconnection set H ⊆ T is a set of trajectory qualifiers
for the synchronisation of trajectories and the synchronisation set A ⊆ A is
the set of action names for the synchronisation of discrete transitions. Parallel
composition defines a new process that executes both processes in parallel forcing
trajectory prefixes and actions in A to synchronise. If actions are not in A, they
are executed in the interleaving manner, i.e., sequentially in an arbitrary order.
We require all shared trajectory qualifiers to be in the interconnection set H to
avoid unintended synchronisation. A case when a shared qualifier is not in H,
we consider to be an error.

• new w.B is a hiding operator, where w is a set of discrete action names and
trajectory qualifiers to hide.

• B[σ] is a renaming operator, where σ is a renaming function. Function σ takes
an action name or a trajectory qualifier and changes it. Renaming function for
the actions σ : A → A. For the trajectory qualifiers renaming is defined as
σ : T → T and it should be injective for the trajectory qualifiers. B[σ] behaves
as B but with the actions and trajectory-qualifiers renamed according to σ.

• P is a recursive equation, where P is a process identifier.

We use syntactic functions L(B) andN(B) for collecting action and trajectory qualifiers
occurring in B, respectively.

We require a consistent signal flow, i.e., only the parallel composition is allowed to
change the set of trajectory qualifiers in the process. Renaming operation only renames
them, but does not change their types.

We define restrictions on processes and then show that if the conditions are satisfied
then the signal flow is consistent.

Definition 5.5.1 (Trajectory qualifiers of a process). Let P be a set of processes and T
be a set of trajectory qualifiers. Let ω denotes an ill-defined type. Then we define
a syntactical function N : P → T that collects trajectory qualifiers occurring in the
process.

N(0) :=∅
N(a.B) :=N(B)

N(
[

f | Φ
]
.B) :=


ω, ifN(B) = ω ∨ ∀ϕ ∈ ΦN(B) , T(ϕ);
T(ϕ), ifN(B) = ∅∨

N(B) , ∅ ∧N(B) , ω ∧ ∀ϕ , ∅ ∈ Φ : N(B) = T(ϕ);

N

(∑
i∈I

Bi

)
:=


ω, if (∃Bi(i ∈ I) : Bi = ω) ∨ (∃Bi,B j(i, j ∈ I) :

N(Bi) , ∅ ∧N(B j) , ∅ ∧N(Bi) , N(B j))⋃
i∈IN(Bi) if ∀i, j ∈ I : (N(Bi) , ∅ ∧N(B j) , ∅

then N(Bi) = N(B j))

78

i
i

i
i

i
i

i
i

5.5. L   

N

(
B ‖HA C

)
:=

ω, ifN(B) = ω ∨N(C) = ω
N(B) ∪N(C), ifN(B) , ω ∧N(C) , ω

N(B [σ]) :=


ω, ifN(B) = ω
σ(N(B)), ifN(B) , ∅ ∧N(B) , ω
∅, ifN(B) = ∅

N(new w.B) :=

ω, ifN(B) = ω
N(B) \ w, ifN(B) , ω

N(P) :=Tp,where, if P , B, then Tp := N(B)

Basically, we collect all qualifiers names from process, and require that no new quali-
fiers appear, except in parallel composition. In hidding qualifier names are not visible
to an external observer, but they are still there. In renaming only qualifiers name
change, not their type. �

Definition 5.5.2 (Consistent signal flow). We will require that all processes have a con-
sistent signal flow, i.e., that for all processesN(B) , ω. �

We formulate consistency property (Theorem 5.5.4) and give a proof after introducing
SOS rules.

5.5.2 Operational semantics of BHPC

In this section we define the semantics of the BHPC operators.

Action prefix a.B

Process a.B defines a process which executes the action a and then behaves as B.
A special silent action, denoted τ, is introduced. It does not represent a potential

communication and is not directly observable. Silent actions may be used to specify a
non-deterministic behaviour3 (as internal actions in Milner [1989, p.37–43]).

a.B a
−→ B (5.2)

In Section 5.7.1 we define a parametrised version of the action prefix. The use of both
ordinary and parametrised action prefixes is illustrated in Section 5.8.

Trajectory prefix
[
ϕ | Φ

]
.B

(
f
)

A trajectory prefix defines the behaviour that starts with a trajectory denoted by f and
is followed by the trajectory continuation or behaviour specified by B.

We will use extended notation to denote parameterisation of processes, i.e., B
(

f
)

will denote a process parameterised by a trajectory variable f . Furthermore, B
(
ϕ ; f ′

)
will denote substitution of such trajectory variable by ϕ ; f ′.[

f | Φ
]
.B

(
f
) ϕ
−→

[
f ′ | Φ\\ϕ

]
.B

(
ϕ ; f ′

)
for all ϕ ∈ Φ

+
(5.3)

3Of course, it is not the only way to model nondeterminism, e.g., nondeterministic choice operator can
be defined, it can be created by parallel composition.

79

i
i

i
i

i
i

i
i

5. B H P C

where Φ is a set of trajectories such that ∀ϕ,ψ ∈ Φ T(ϕ) = T(ψ). Notice that ε can
be in Φ, because it complies with any qualifier type. f , f ′ are trajectory variables.
Let ψ is trajectory and ϕ is taken from (5.3), then ϕ ; ψ ∈ Φ or ϕ ∈ Φ such that
t(ϕ) , ∞ and ϕ , ε. If a trajectory or a part of it was taken and there exists a
continuation of the trajectory, then the system can continue with a trajectory from
the trajectory continuations set (Definition 5.3.18). However, if a whole trajectory was
taken, then the system may continue with the consecutive process with the substituted
trajectories (see (5.4)).

(
ϕ ; f ′

)
defines substitution of the taken trajectories in the

following processes, i.e., all instances of f in B are substituted by the taken trajectory
ϕ concatenated with its follow-up f ′, or if it is finished, by the whole taken trajectory
ϕ.

After defining concatenation (5.4) we present a derived rule that explains behaviour
of the empty trajectory ε in trajectory prefix.

Notation 5.5.3. We will extend notation to make use of trajectory prefix more conve-
nient [

q1, . . . , qm

∣∣∣ Φ y Pred
ww� Predexit

]
where

• q1, . . . , qm are trajectory qualifiers, which can be used to access corresponding
parts of trajectories.

• As explained in the end of Section 5.3, the set of trajectories can be defined
in several different ways. We will allow such notation in the trajectory prefix
definition to bring out conditions on the set of trajectories.

Furthermore, we will allow to define the set of trajectories directly in the definition of
trajectory prefix, where commas will be used to separate conditions. We will use ⇓ to
separate exit conditions, when it is required. �

Concatenation

Concatenation extends definition of trajectory prefix. It formalises behaviour after
taking a complete trajectory. The process can choose to continue with another trajectory
or an action prefix, depending on the successive process.

Concatenation is formalised by the following derivation rules.

B
(
ϕ
) ψ
−→ B′[

f | Φ
]
.B

(
ϕ
) ϕ;ψ
−−→ B′

ϕ ∈ Φ (5.4a)

B (ε) a
−→ B′[

f | Φ
]
.B

(
f
) a
−→ B′

ε ∈ Φ (5.4b)

In (5.4a) it is shown, how to concatenate two trajectories. While (5.4b) defines a
situation, where after taking a whole trajectory process continues with an action prefix.

For a convenience we derive an equation from the concatenation and trajectory
prefix rules. If ε ∈ Φ then[

f | Φ
]
.B(f) ∼

[
f | Φ \ ε

]
.B(f) + B(ε) (5.5)

80

i
i

i
i

i
i

i
i

5.5. L   

We leave proof of these equation as an exercise for readers.

Choice
∑
{B(v) | v ∈ I}

Choice is a generalised operator on sets of behaviour expressions. To generate the set
we allow arbitrary index sets I. It can be thought of as a generalisation of the ordinary
process algebraic choice.

B (w) a
−→ B′∑

v∈I
B (v) a

−→ B′
w ∈ I (5.6a)

B (w)
ϕ
−→ B′∑

v∈I
B (v)

ϕ
−→ B′

w ∈ I (5.6b)

In (5.6a) the choice for action prefixes is defined, which is the same as in usual process
algebras. Rule (5.6b) tells that choice for trajectories is made before taking a trajectory.

Use of choice is illustrated in examples from Section 5.8.

Parallel composition B1 ‖
H
A B2

Parallel composition models concurrent evolution of several processes. During the
evolution they may interact with each other via synchronisation on discrete and
continuous-time transitions. In BHPC synchronisation on identical names is assumed
as the basic synchronisation concept. In order to avoid context-dependent interpreta-
tions of operators, the set of action names A and the set of trajectory qualifiers H that
are subject to synchronisation, are made explicit in the parallel operator ‖HA .

This form of synchronisation implies that parallel components jointly execute iden-
tical actions or trajectories with common signal evolutions that occur in their transitions
and are subject to synchronisation.

The basic idea of synchronising trajectories is not much different than that of
synchronising actions. Let B1 and B2 be the processes which can take trajectories

ϕ : (0, t]→W′

1 × · · · ×W′

m and ψ : (0, t]→W′′

1 × · · · ×W′′

k

in W′ =
(
W′

1 × · · · ×W′
m,

(
q′1, . . . , q

′
m

))
and W′′ =

(
W′′

1 × · · · ×W′′

k ,
(
q′′1 , . . . , q

′′

k

))
, respec-

tively. The static constraint is imposed that B1 ‖
H
A B2 is only well-formed iff L(B1) ∩

L(B2) ⊆ A and N(B1) ∩ N(B2) ⊆ H (where L is a syntactical function, that collects
actions names from the process). LetW be a set of signal domains and let

T
′ = T(ϕ) ∩ T(ψ). (5.7)

If a set of coinciding trajectory quantifiers is a subset of the synchronisation set

T
′
⊆ H (5.8a)

and trajectories are the same on the coinciding quantifiers

πT
′

(ϕ) = πT
′

(ψ), (5.8b)

81

i
i

i
i

i
i

i
i

5. B H P C

then the resulting trajectory is a synchronised trajectory of B1 ‖
H
A B2 that simultaneously

changes the states of B1 and B2, defined as

χ : (0, t]→W1 × · · · ×Wn

inW =
(
W1 × · · · ×Wn,

(
q1, . . . , qn

))
such that

T(χ) = T(ϕ) ∪ T(ψ),

πT
′

(ϕ) = πT
′

(ψ) = πT
′

(χ),

ϕ = πT(ϕ)(χ),

ψ = πT(ψ)(χ).

It can be also defined via the composition of trajectories (Definition 5.3.22), i.e., χ =
ϕ ×H ψ.

We define the following SOS rules for parallel composition

B1
a
−→ B′1,B2

a
−→ B′2

B1 ‖
H
A B2

a
−→ B′1 ‖

H
A B′2

a ∈ A (5.9a)

B1
a
−→ B′1

B1 ‖
H
A B2

a
−→ B′1 ‖

H
A B2

B2 ‖
H
A B1

a
−→ B2 ‖

H
A B′1

a < A (5.9b)

B1
ϕ
−→ B′1,B2

ψ
−→ B′2

B1 ‖
H
A B2

ϕ×Hψ
−−−−→ B′1 ‖

H
A B′2

(5.7) and (5.8) hold (5.9c)

Rule (5.9b) explains interleaving semantics for the discrete behaviour, when discrete ac-
tions names do not coincide. Synchronisation on actions is defined in (5.9a). Rule (5.9c)
defines the parallel composition of similar trajectories. Notice that because of density
(Definition 5.4.4) we do not have to gives rules for the trajectories with different dura-
tions.

Parallel composition is illustrated in Examples 5.8.1and 5.8.2.

Hiding new w.B

Following the conventions of the process calculus a hiding is introduced as a scope
restriction operator. new w.B restricts the use of the names w to B. Hiding for discrete
actions is just an ordinary hiding. It is worth emphasising that hiding (especially in
continuous-time case) should be used carefully, because two different trajectories can
easily become observably equivalent, if only equivalent parts of the behaviour are

82

i
i

i
i

i
i

i
i

5.5. L   

visible. Hiding may easily influence the outcome of parallel composition and choice.

B a
−→ B′

new w.B τ
−→ new w.B′

a ∈ w (5.10a)

B a
−→ B′

new w.B a
−→ new w.B′

a < w (5.10b)

B
ϕ
−→ B′

new w.B
πT(ϕ)\w(ϕ)
−−−−−−→ new w.B′

(5.10c)

The first rule states that if an action should be hidden, it is renamed to τ (silent) action.
Otherwise (the second rule) nothing changes. The third rules defines hiding for the
continuous-time behaviour, i.e., some qualifiers are not visible any more.

Renaming B [σ]

Renaming operator B [σ], where σ is a renaming function, is defined. Renaming of both
action and signal names is allowed. The renaming function σ changes only trajectory
qualifiers, but not their type.

B a
−→ B′

B[σ]
σ(a)
−−→ B′[σ]

B
ϕ
−→ B′

B[σ]
σ(ϕ)
−−−→ B′[σ]

(5.11)

Recursion

The ordinary process algebraic recursion is extended to work with trajectory prefix. It
allows to define processes in terms of each other, like in equation P , B, where P is a
process identifier and actions and signal types of B are only allowed actions and signal
types in P.

B a
−→ B′

P a
−→ B′

P , B
B

ϕ
−→ B′

P
ϕ
−→ B′

P , B (5.12)

5.5.3 Consistent signal flow

Theorem 5.5.4 (Consistent signal flow). If the constraints stated in Definition 5.5.2 are
satisfied, then the signal flow is consistent, i.e., a semantic type is preserved. Then for all
B1,B2,B3, ϕ, ψ holds.

if B1
ϕ
−→ B2

ψ
−→ B3 then B1

ϕ;ψ
−−→ B3

The proof of the theorem is provided in Appendix B.

Corollary 5.5.5. From the Theorem 5.5.4 it is also follows that signal type is consistent, i.e.,
a syntactic type is preserved:

B1
ϕ
−→ B2

ψ
−→ B3 =⇒ N(B1) = N(B2) = N(B3)

83

i
i

i
i

i
i

i
i

5. B H P C

5.5.4 Congruence property

Process algebras usually employ a congruence as a basis for systems analysis. A
congruence for a process algebra is an equivalence relation (i.e, reflexive, symmetric
and transitive) that has the substitution property, i.e, equivalent systems can replace
each other inside any larger system, without changing the behaviour of that system.

Theorem 5.5.6. Hybrid strong bisimulation equivalence on HTSs is a congruence w.r.t. the
operations of BHPC defined by the in Section 5.5.2.

We provide a proof of the theorem in Appendix B.2. Basically, we follow the pro-
cedure from Milner [1989], with certain adaptions to our calculus (mostly, trajectories
related). We analyse every syntactical context and behaviour of bisimilar processes in
such a context.

5.6 Expansion law

The expansion law (Theorem 5.6.3) expresses the parallel composition as a choice of
processes (where parallel composition of discrete actions is resolved in the interleaving
manner).

It is possible to reduce any process in BHPC to a basic form. For processes that
do not involve parallel composition it is trivial. Below we show how the parallel
composition can be eliminated.

Remark 5.6.1 (Notation). We use an extended notation in the expansion law and its
proof to explicitly show substitutions. If we substitute parameter f byϕ ; f ′, we denote
it by

(
ϕ ; f ′/ f

)
instead of just writing

(
ϕ ; f ′

)
. �

We will define a mini expansion law, and then use it to prove the complete expansion
law.

Theorem 5.6.2 (Mini expansion law). Let Φ,Ψ be sets of trajectories such that ∀ϕ,ψ ∈
Φ T(ϕ) = T(ψ), ∀ϕ,ψ ∈ Ψ T(ϕ) = T(ψ). Let TΦ and TΨ be sets of trajectory qualifiers of Φ
andΨ, respectively. If hΦ = πTΦ (h) and hΨ = πTΨ (h), then[

f | Φ
]
.B

(
f
)
‖

H
A

[
g | Ψ

]
.C

(
g
)
=

[h | Φ ×H Ψ] .([
f ′ | Φ\\hΦ

]
.B

(
hΦ ; f ′/ f

) wwwwwwH

A

[
g′ | Ψ\\hΨ

]
.C

(
hΨ ; g′/g

))
We will assume thatΦ andΨ do not contain ε, because if it does, then it can always be rewritten
as

[
f | Φ \ ε

]
.B(f) + B(ε) according to (5.5).

See Section B.3.1 for a proof. Moreover, we would like to remind that in the definition
of composition of sets of trajectories (Definition 5.3.23) closures of sets of trajectories
are used (Φ andΨ).

84

i
i

i
i

i
i

i
i

5.7. D BHPC 

Theorem 5.6.3 (Expansion law). Let

B =
∑
i∈I

bi.Bi +
∑
j∈J

[
f j | Φ j

]
.B j, C =

∑
k∈K

ck.Ck +
∑
l∈L

[
gl | Ψl

]
.Cl

for some terms Bi,B j,Ck and Cl, actions bi and ck, trajectories
[

f j | Φ j

]
and

[
gl | Ψl

]
and the

corresponding sets of qualifiers names TΦ j and TΨl , finite index sets I ∩ J = K ∩ L = ∅. Let
h j = π

TΦ j (h) and hl = π
TΨl (h). Then

B ‖HA C = (5.14)∑
i∈I

bi<A

bi.(Bi ‖
H
A C) +

∑
k∈K
ck<A

ck.(B ‖HA Ck) +
∑

i∈I,k∈K
bi∈A,
bi=ck

bi.(Bi ‖
H
A Ck)+ (5.15)

∑
j∈J
l∈L

[
h | Φ j ×H Ψl

]
. (5.16)

([
f ′j | Φ j\\h j

]
.B j

(
h j ; f ′j / f j

) wwwwwwH

A

[
g′l | Ψl\\hl)

]
.Cl

(
hl ; g′l/gl

))
(5.17)

We will assume that Φ j and Ψ j do not contain ε, because if it does, then it can always be
rewritten as

[
f | Φ \ ε

]
.B(f) + B(ε) according to (5.5).

The proof of Theorem 5.6.3 is based on Theorem 5.6.2 and Milner [1989, p.96-97].
It is presented in Section B.3.2

5.7 Derived BHPC operators

BHPC is an assembly language for a modelling of hybrid systems. We derive several
operators to increase usability of the language. We introduce parametrisation of action
prefix in Section 5.7.1. In Sections 5.7.2 and 5.7.3 we introduce two useful operators,
idle and ∆(delay), defining a trajectory prefix without any observable behaviour and
delay, respectively. And in Section 5.7.4 we introduce a guard operator.

5.7.1 Parametrisation of action prefix

We will use parametrisation of action prefix like in Milner [1989, p.53–58].

a(v : V).B(v) ,
∑

v∈V
a(v).B(v) (5.18)

Parametrisation is frequently used for value passing, as it is demonstrated in the bounc-
ing ball example (Example 5.8.1).

5.7.2 Idling

Idling in BHPC is treated as a continuous-time signal without any observable be-
haviour. We define it as follows

idle.B =
[
t | 0

]
.B

85

i
i

i
i

i
i

i
i

5. B H P C

'

&

$

%

Off

d
dt l = −Kl

l > tempmin

'

&

$

%

On

d
dt l = K(h − l)

l 6 tempmax

-
init

l := l0

.
...........................

..........................
.........................

........................
.....................

.....

.................
.........~

on

l 6 tempon

.
...................

.........

.......................
....

..........................
..........................

............................

.............................} off
l > tempoff

Figure 5.5: A thermostat

-
v := v0

h := h0

'

&

$

%
ḣ = v

v̇ = −g

h > 0
�

h = 0

v := −cv
.

.......
.......

.

Figure 5.6: A bouncing ball

where t is a reserved variable denoting time and a set of trajectories 0 = {(0, t] →
R+ ∀t}. We do not use variable t in the formal definition of calculus. However, in
an implementation (see, e.g., Chapter 7) it is a part of any trajectory prefix. It does
not manifest any observable behaviour, but reacts as soon as it is invoked by another
process, which communicates with the process that follows the idling period.

5.7.3 Delays

In BHPC time and time related constructs, e.g., delays, are treated as a continuous-time
signals with rate 1. We define delay in a following way

∆(delay).B =
[
t
∣∣∣ t(0) = 0, ṫ = 1

ww� t = delay
]
.B, (5.19)

where t is a reserved variable denoting time. We do not use variable t in the formal
definition of calculus. However, in an implementation (see, e.g., Chapter 7) it is a
part of any trajectory prefix. In contrast to idling (Section 5.7.2) it contains only one
trajectory, and can exit only after completing it. Of course, it can take this trajectory in
parts.

Such process does not manifest any observable behaviour for delay time units. After
delay time units the systems progresses with the process following delay.

5.7.4 Guard

Sometimes it is useful to check some conditions explicitly, and if they are not satisfied,
to stop the progress of process. Guard is one of such constructs.〈

Pred(x)
〉
.B(x) =

∑
w|=Pred(w)

B (w) (5.20)

Here x are process parameters variables. Behaviour is very simple, i.e., if a transition
can be taken, then it is taken, if and only if the guard is satisfied.

5.8 Application of BHPC

To illustrate the application of BHPC we present several examples.

5.8.1 Bouncing ball

Example 5.8.1 (Bouncing ball). The bouncing ball is described in Section 2.2.1. The
hybrid automaton of the bouncing ball is depicted in Figure 5.6. In BHPC it can be

86

i
i

i
i

i
i

i
i

5.8. A  BHPC

defined in the following way:

BB(h0, v0) , [h, v | Φ(h0, v0) ⇓ h = 0] .BB(0,−c ∗ v)
Φ(h0, v0) = {h, v : (0, t]→ R |

h(0) = h0, v(0) = v0, ḣ = v, v̇ = −g, h > 0}

Trajectory prefix [h, v | Φ(h0, v0) ⇓ h = 0] defines the dynamics of the ball until the
bounce, and then the process continues recursively calling itself with updated signals
BB(0,−c ∗ v). Evolution of the simple bouncing ball is depicted in Figure D.2.

The given specification of the bouncing ball can be extended. We add discrete
actions to sense the elasticity of the bounce and increase the ball’s kinetic energy, and
add a compensating controller.

BB(h0, v0)) , [h, v | Φ(h0, v0)) ⇓ h = 0] .bounce(c : [0, 1]).
[h, v | Φ(0,−cv) ⇓ v = 0] .push(v : R).BB(h, v)

Control(v0) , idle.bounce(c : [0, 1]).
idle.push ((1 − c) v) .Control ((1 − c) v)

System(h, v) , BB(h0, v0) ‖v0
push,bounce Control(v0)

�

5.8.2 Thermostat

Example 5.8.2 (Thermostat). The thermostat example is described in Section 2.2.2.
A hybrid automaton of the thermostat is shown in Figure 5.5. It starts with the

initial temperature l0 ∈
[
tempMin, tempMax

]
. In locations Off and On the heater is off

and on, respectively, and the temperature changes according to the flow conditions.
The corresponding model in BHPC:

Thermostat(l0) , ThOff(l0)

ThOff(l0) ,
[
l
∣∣∣ ΦOff(l0)

ww� tempOn > l > tempMin
]
.on.ThOn(l)

ThOn(l0) ,
[
l
∣∣∣ ΦOn(l0)

ww� tempOff 6 l 6 tempMax
]
.off.ThOff(l)

ΦOff(l0) = {l : (0, t]→ R | l(0) = l0, l̇ = −Kl}

ΦOn(l0) = {l : (0, t]→ R | l(0) = l0, l̇ = K(h − l)}

It consists of two process.

• In process ThOff the heater is off and the trajectory prefix defines the temperature
fall. When the temperature reaches the interval

[
tempOn, tempMin

]
, the process

can perform action on and switch to the process ThOn.

• Process ThOn analogously defines the period of heating.

However, it is possible to upgrade such thermostat without changing the specifica-
tion itself. Let us add a controller that observes temperature and forces the thermostat
to switch on and off at exactly tmpOn and tmpOff , correspondingly:

Control(l0) ,
[
l
∣∣∣ any(l0)

ww� l = tmpOn
]
.on.[

l
∣∣∣ any(l0)

ww� l = tmpOff
]
.off.Control(l)

87

i
i

i
i

i
i

i
i

5. B H P C

UpgradedThermostat(l0) ,Thermostat(l0) ‖lon,off Control(l0)

where any(l) is a special function that models an observer, i.e., it accepts any behaviour
for l. It works only in parallel composition. Technically it just adds exit conditions to
the parallel composition of trajectory prefixes.

The results of simulation of the simple and controlled thermostat are depicted in
Figure D.4. Dashed line depicts the evolution of the simple thermostat and solid line
depicts the evolution of the coupled version. �

5.8.3 Dry friction

Example 5.8.3 (Dry Friction). A dry friction is described in Example 3.3.13. Here we
provide a BHPC version of it. Three processes are defined, each corresponding to a
certain mode of behaviour:

• Process BodyStop defines a behaviour, when the driving force is neutralised by
the friction. Corresponding dynamics are defined in ΦStop. Guards

〈
Fd > µ0FN

〉
and

〈
Fd 6 −µ0FN

〉
limit the choice, i.e., if the driving force is positive, then the

system switches to the process BodyPos, and if it is negative, then to the process
BodyNeg.

• Processes BodyPos and BodyNeg define movement of the body with positive or
negative velocity, respectively. Corresponding dynamics are defined inΦPos and
ΦNeg, respectively. If the driving force becomes to small and is neutralised by
the friction, then the system switches to the process BodyStop.

BodyStop(x0, v0,F0
d) ,

[
x, v,Fd

∣∣∣ ΦStop(x0, v0,F0
d)

www� v , 0,Fd > |µ0FN |
]
.(〈

Fd > µ0FN
〉
.BodyPos(x, v,Fd)+〈

Fd 6 −µ0FN
〉
.BodyNeg(x, v,Fd)

)
BodyPos(x0, v0,F0

d) ,
[
x, v,Fd

∣∣∣ ΦPos(x0, v0,F0
d)

www� v = 0,Fd 6 µFN

]
.〈

v = 0,Fd < µ0FN
〉
.BodyStop(x, v,Fd)

BodyNeg(x0, v0,F0
d) ,

[
x, v,Fd

∣∣∣ ΦNeg(x0, v0,F0
d)

www� v = 0,Fd > −µFN

]
.〈

v = 0,Fd > −µ0FN
〉
.BodyStop(x, v,Fd)

ΦStop(x0, v0,F0
d) = {x, v,Fd,Fn : (0, t]→ R |

x(0) = x0, v(0) = v0,Fd(0) = F0
d,

ẋ = v,Fd = sin(t)}

ΦPos(x0, v0,F0
d) = {x, v,Fd,Fn : (0, t]→ R |

x(0) = x0, v(0) = v0,Fd(0) = F0
d,

ẋ = v,Fd = sin(t),mv̇ = Fd − µFN}

ΦNeg(x0, v0,F0
d) = {x, v,Fd,Fn : (0, t]→ R |

x(0) = x0, v(0) = v0,Fd(0) = F0
d,

ẋ = v,Fd = sin(t),mv̇ = Fd + µFN}

88

i
i

i
i

i
i

i
i

5.8. A  BHPC

It is easy to see that by bringing conditions out in the trajectory prefix we can easily
increase readability and clarity of specifications in some cases. �

5.8.4 Two tanks

Example 5.8.4 (Two tanks). Consider the two tanks model [Lygeros and Sastry, 1999,
De Schutter and Heemels, 2004], where both tanks have one common fluid source that
provides fluid at the rate of lin units per second. Through a pipe, the fluid source can
be directed either to the left tank or to the right tank. Both tanks have openings at the
bottom, and from the tanks water drains at the rates of dleft and dright units per second,
respectively. Initially, the tanks contain l0left and l0right units of fluid, respectively. The
pipe can switch between the tanks instantaneously. The objective is to keep the fluid
volumes in the interval (lmin, lmax).

Let lleft and lright are volumes in the left and right tanks, correspondingly.

TwoTanks(l0left, l
0
right) ,[

lleft, lright

∣∣∣∣ Φleft(l0left, l
0
right)

wwww� lleft = lmax ∨ lright = lmin

]
.FillRight.[

lleft, lright

∣∣∣ Φright(lleft, lright)
www� lleft = lmin ∨ lright = lmax

]
.FillLeft.

TwoTanks(lleft, lright)

Φleft(l0left, l
0
right) = {lleft, lright : (0, t]→ R |

lleft(0) = l0left, lright(0) = l0right, l̇left = dleft + lin, l̇right = dright}

Φright(l0left, l
0
right) = {lleft, lright : (0, t]→ R |

lleft(0) = l0left, lright(0) = l0right, l̇left = dleft, l̇right = dright + lin}

This system is of interest, because by ignoring physical reality one can devise a
controller that keeps both water levels within the required bounds: whenever lleft falls
to lmin, direct the pipe to the left tank, and whenever lright falls to lmin, direct the pipe
to the right tank (or, corresponding switching at the lmax). However, such a controller
cannot be realised physically, because it would cause the pipe to switch back and forth
infinitely often within a finite amount of time, if dleft + dright , lin.

To demonstrate compositional modelling advantages we propose a slightly differ-
ent version of the same system. In this specification l is water level in the tank, dout is
a drain rate and lin is an inflow rate.

TankIn(l0, dout, lin) ,
[
l
∣∣∣ l(0) = l0, l̇ = dout

www� true] .off.TankOut(l, dout, lin)

TankOut(l0, dout, lin) ,
[
l
∣∣∣ l(0) = l0, l̇ = dout + lin

www� true] .off.TankIn(l, dout, lin)

Controller(l0left, l
0
right) ,

[
lleft, lright

∣∣∣ any(t)
www� lleft = lmax ∨ lright = lmin

]
.fillright.[

lleft, lright

∣∣∣ any(t)
www� lleft = lmin ∨ lright = lmax

]
.fillleft.

Controller(lleft, lright)

89

i
i

i
i

i
i

i
i

5. B H P C

System(l0left, l
0
right, dlout, drout, llin, lrin) ,(

TankOn(l0left, dlout, llin)
[
lleft/l, dlout/dout, llin/lin, fillleft/on, fillright/off

]
‖

TankOn(l0right, drout, lrin)
[
lright/l, drout/dout, lrin/lin, fillright/on, fillleft/off

])
‖

lleft,lright

fillleft,fillright
Controller(lleft, lright)

�

5.9 An experimental version of calculus

As a part of development of BHPC, we have explored several versions of the calculus
and operators. The “main” calculus was presented above; however, we would like to
introduce an interesting experimental alternative.

Essential difference is a changed trajectory prefix (5.3) and a special version of
choice, so called superposition. We are not going to discuss all the differences between
calculi, but only point out some interesting features.

Trajectory prefix An alternative trajectory prefix is a more elementary notion than
that of an ordinary trajectory prefix.

[
ϕ
]
.B

ϕ
−→ B (5.21a)[

ϕ
]
.B

ψ
−→

[
ϕ\\ψ

]
.B for all ψ ≺ ϕ (5.21b)

In (5.21a) a process engages in the trajectory ϕ, completes it and then behaves as
described by B. While in (5.21b) only a part of the trajectory is taken, and then the
process will continue with the remainder of the trajectory (ϕ\\ψ).

It is easy to notice that it is a more elementary version of trajectory prefix.

�
ϕ

+

@ψ
” = ”

�
ϕ

or

@ψ

choice made

6

�
ϕ

⊕

@ψ
” = ” �ϕ + ψ

@

choice made

6

Figure 5.7: Superposition

Superposition Superposition is a generalised operator on sets of behaviour expres-
sions. To generate the set we allow arbitrary index sets I. It can be thought of as a
generalisation of the choice

∑
in ordinary process algebra. Indeed, if all arguments

are of the form av.B(v) then the intended interpretation of⊕
{B(v) | v ∈ I} or

⊕
v∈I

B(v) is
∑
v∈I

B(v)

The difference between
⊕

and
∑

becomes apparent in the case of trajectory pre-
fixes: when two trajectories are superposed the choice between them is not made at

90

i
i

i
i

i
i

i
i

5.10. C

the time of superposition, but at the time when the trajectories start bifurcating, as
illustrated in Figure 5.7.

B(w) a
−→ B′⊕

v∈I
B(v) a

−→ B′
w ∈ I (5.22a)

{B(v)
ϕ
−→ B′(v) | v ∈ I}, {B(w)��

ϕ
−→ | w ∈ J}, I , ∅⊕

v∈I∪J
B(v)

ϕ
−→

⊕
v∈I

B′(v)
(5.22b)

In (5.22a) the superposition for action prefixes is defined. Rule (5.22b) tells that we
can not distinguish between two signal transitions, if they can take the same trajectory,
and if some processes can evolve according to a certain trajectory, and another set
can not, then the choice is resolved in the favour of the processes, which can take the
trajectory.

Problems Main problems in this case raise from the negative premises in the super-
position definition. It is not clear, do we get a sound transition system with a rule with
negative premises.

One of the most important differences is that we were able to prove that bisimula-
tion is a congruence in the main version of calculus, while it remains an open question
for the calculus with superposition, because we were not able to find a suitable strati-
fication mapping.

However, we believe that a further investigation of both process calculi and im-
plications of the above mentioned differences on modelling and analysis of hybrid
systems may be of interest.

5.10 Conclusions

In this chapter we have introduced the hybrid process calculus BHPC. It has been
introduced in several steps. First of all we have defined notions of signal space
(Definition 5.3.1) and trajectories (Definition 5.3.3), where the notion of trajectory is a
basic element defining continuous-time evolution and corresponds to a notion of action
in discrete systems. Based on these two notions and a classical technique to define
dynamic behaviour of systems, i.e., labelled transition systems, we have introduced
hybrid transition systems (Definition 5.4.1). Together with a suitable adaptation of the
classical notion of hybrid strong bisimulation (introduced in Definition 5.4.7) it yields a
mathematical interpretation of hybrid behaviour, viz. as equivalence classes of hybrid
transition systems modulo bisimulation that can been interpreted as a generalisation
of the behavioural approach to classical dynamic systems. Moreover, it can be seen
as a humble step towards model-based testing techniques that use transition systems,
e.g., Larsen et al. [2003], Briones and Brinksma [2004, 2005].

To specify how hybrid transition systems are built, we have defined a language
for BHPC (Section 5.5.1) and have given a semantics using structural operational
semantics rules [Plotkin, 1981].

91

i
i

i
i

i
i

i
i

5. B H P C

Furthermore, hybrid strong bisimulation equivalence on hybrid transition systems
is a congruence w.r.t. the operators of BHPC.

We have augmented our calculus with the expansion law (Definition 5.6.3) that
provides a mechanism to transform a parallel composition of two processes to a choice
of processes by pushing the parallel composition one step further.

To increase the applicability of the calculus we have added several derived opera-
tors, e.g., a parameterised version of action prefix, idling, delay and guard. We have
illustrated application of the calculus by a set of small examples.

In the last but one section we have discussed an alternative version of the calculus
that has some advantages and drawbacks compared with the “main” version.

We believe that the calculus provides a sound and convenient framework for
the investigation of hybrid phenomena and for research of techniques that could
help to deal with it. BHPC combines the behavioural approach (Section 5.2) and
process algebraic theory. Therefore, as future research directions we see not only a
development of brand new techniques and theories, but also an adaptation of results
from both areas. We believe that the development of analytical techniques for the
analysis of diverse properties, e.g., stability, would help to evaluate the conceptual and
practical implications of our approach as well as to provide new insight and ideas on
the problems itself. Furthermore, we expect that a notion of weak bisimulation [Milner,
1989] for hybrid systems could provide a lot insight on the interchangeability of
components of embedded systems and a better intuition on hybrid phenomena.

92

i
i

i
i

i
i

i
i

A certain old woman, out of excessive curiosity, fell
out of a window, plummeted to the ground, and
was smashed to pieces.
Another old woman leaned out of the window and
began looking at the remains of the first one, but she
also, out of excessive curiosity, fell out of the win-
dow, plummeted to the ground and was smashed
to pieces.
Then a third old woman plummeted from the win-
dow, then a fourth, then a fifth.
By the time a sixth old woman had plummeted
down, I was fed up watching them, and went off
to Mal’tsevisky Market where, it was said, a knitted
shawl had been given to a certain blind man.

Daniil Kharms 6
BHPC in context of related frameworks

6.1 Introduction

In Chapter 5 we presented Behavioural Hybrid Process Calculus (BHPC), a hybrid sys-
tems modelling and analysis framework based on the combination of the behavioural
approach (Section 5.2) and process algebraic theory (Section 3.3.9). However, it is not
the only approach that deals with hybrid phenomena. In Chapter 3 we surveyed some
of the major approaches for modelling and analysis of hybrid systems. In this chapter
we aim at establishing the place of BHPC in the context of the hybrid systems realm.

In Section 3.3.1 the formalisms are grouped to dynamical systems, transition systems
based frameworks and simulation languages. We follow the same tactics here by starting
with comparison of BHPC and dynamical systems. Then we proceed by matching it to
the other transition systems based frameworks. The comparison is closed by putting
BHPC alongside the simulation languages.

6.2 BHPC and hybrid dynamical systems

In Section 3.3.1 we singled out hybrid dynamical systems, i.e., piecewise affine systems
(Section 3.3.2), mixed logical dynamical systems (Section 3.3.3), complementarity sys-
tems (Section 3.3.4) and max-min-plus-scaling systems (Section 3.3.5), as extensions
of ordinary dynamical systems. Essentially, these approaches combine usual ways of
defining continuous behaviour (ODE/DAE) and some basic means to for switching
between the different continuous evolutions.

The underlying structure of BHPC considerably differs from the hybrid dynamical
systems. However, certain aspects of approaches are comparable.

All the continuous-time behaviour that is expressible in any of the formalisms
defined in Sections 3.3.2–3.3.5 can be defined in BHPC as well. The trajectory based

93

i
i

i
i

i
i

i
i

6. BHPC     

approach adopted in BHPC allows to use any means of continuous-time behaviour
representation that are used in the above mentioned formalisms. The inverse holds
only in some cases, i.e., when the trajectories can be expressed by ODE/DAE (linear
or non-linear, depending on the formalism). Switching behaviour can be translated as
well.

We do not provide transformation methods for all above mentioned hybrid dy-
namical systems. However, we demonstrate, how piecewise affine systems (PWA) (Sec-
tion 3.3.2) and mixed logical dynamical systems (MLD) (Section 3.3.3) can be transformed
to BHPC, in (6.1a) and (6.1b), respectively, with N as a number of modes. Notice that
to simulate the specification in Behavioural Hybrid Process Calculus input u(t) should
be specified.

Processi(x0) ,
[
x, y,u

∣∣∣∣ Φi

(
x0

) y [x u]T
∈ Ωi

]
.

∑
j=1,...,N

(〈[
x
u

]
∈ Ω j

〉
.Process j(x)

)
Φi(x0) ={x : (0, t]→ Rn, y : (0, t]→ Rp,u : (0, t]→ Rm

|

x(0) = x0, ẋ = Aix + Biu + fi, y = Cix +Diu + gi}

(6.1a)

Processi(x0) ,
[
x, y,u

∣∣∣ Φi(x0)
]
.∑

j=1,...,N

(〈
E j

2tδ(t) + E j
3tz(t) > E j

1tu(t) + E j
4tx(t) + E j

5t

〉
.Process j(x)

)
Φi(x0) =

{
x : (0, t]→ Rnc × {0, 1}nl , y : (0, t]→ Rmc × {0, 1}ml ,

u : (0, t]→ Rkc × {0, 1}kl |

x(t + 1) = Ai
tx(t) + Bi

1tu(t) + Bi
2tδ(t) + Bi

3tz(t)

y(t) = Ci
tx(t) +Di

1tu(t) +Di
2tδ(t) +Di

3tz(t)

Ei
2tδ(t) + Ei

3tz(t) > Ei
1tu(t) + Ei

4tx(t) + Ei
5t

}
(6.1b)

Moreover, De Schutter and Heemels [2004] shows that piecewise affine systems (Sec-
tion 3.3.2), mixed logical dynamical systems (Section 3.3.3), complementarity systems
(Section 3.3.4) and max-min-plus-scaling systems (Section 3.3.5) are equivalent (some
under certain assumptions) and how transformation amongst some of them can be
carried out. Thereby, the transformation to BHPC can be achieved in several steps.

In contrast, the inverse transformations (from BHPC to one of hybrid dynamical
formalisms) are possible only for a restricted classes of BHPC. Furthermore, it is not
clear, how to express parallel composition, and modularity in general, in dynamical
systems.

6.3 BHPC and transition systems based approaches

Frequently formalisms originating from computer science are implicitly or explicitly
built on the transitions systems. As was explained in Sections 3.3.9 and 5.4, transition
systems consist of states and transitions. Moreover, a language as in process algebras
or a visual representation as automata are used to describe the way, the transition
systems are built.

94

i
i

i
i

i
i

i
i

6.3. BHPC     

In this section we compare BHPC to such formalisms by studying the correspond-
ing operators and other relevant properties.

Continuous-time behaviour. In BHPC continuous-time behaviour is represented
by the trajectories. Similar approaches are chosen in hybrid I/O automata (HIOA,
Section 3.3.8) and hybrid behavioural automata (HBA, Section 3.3.7). However, in
HIOA the trajectories are defined in a different way, for example HIOA has point
trajectories and trajectories with left and right closed or open domains in contrast to
BHPC where only trajectories with time-domain (0, t] are allowed. Other approaches
are more restrictive than BHPC, i.e., continuous-time behaviour should be represented
by the differential equations.

Hybrid transition systems. Hybrid transition systems are not so different in BHPC,
ACPsrt

hs (Section 3.3.9), HyPA (Section 3.3.9) and Hybrid χ (Section 5). However, in
HyPA and Hybrid χ a successful termination is defined in contrast to BHPC.

Choice. Choice is non-deterministic for actions, but different ways to resolve choice
for continuous-time behaviour are chosen. In BHPC and HyPA it is done at the
beginning of transition. In Hybrid χ time progress does not resolve it, however, if the
trajectories separate, it leads to deadlock. Only actions can resolve choice in ACPsrt

hs ,
time progress does not resolve it. Moreover, if signals bifurcate while time passes, it
deadlocks.

Parallel composition. In BHPC parallel composition of actions is resolved in the in-
terleaving fashion and signals synchronise on common qualifiers. In parallel compo-
sition of continuous-time behaviour of HyPA the participating processes synchronise
on the common part of the global signal space. In Hybrid χ a different communication
paradigm is chosen, i.e., it is carried out via directed channels, in contrast to BHPC,
where direction is not important. A similar choice was made in HIOA, where inputs
and outputs are specified. In M (Section 3.3.10) and C (Section 3.3.11)
variables are separated to inputs and outputs.

Bisimulation. In BHPC the hybrid strong bisimulation is a congruence relation with
respect to the defined operators. The same holds in Hybridχ. In contrast, it is not a con-
gruence for the parallel composition of subsystems in Bergstra and Middelburg [2005].
In HyPA only special types of bisimulation, i.e., robust and stateless bisimulations are
congruences, and strong bisimulation is not.

Mobility and Φ-calculus. In Φ-calculus (Section 5), instead of mixing a continuous
(signal) flow and discrete actions, systems are discrete entities surrounded by the
continuous world. The discrete process can interact with the environment, where
evolution is typically described by the autonomous differential equations and typically
over R. In addition, the processes can reconfigure themselves.

BHPC is more flexible w.r.t. defining continuous behaviour, and its evolution, while
in Φ-calculus it is possible to change configuration of the system.

95

i
i

i
i

i
i

i
i

6. BHPC     

� �
algorithm HAtoBHPC (ha:H A)
begin

forall l ∈ L do
exit_cond = ∅; // exit conditions
guardActProcl = ∅; // corresponding guard, action and recursive call
forall (l, σ j, li) ∈ E do // for all outgoing transitions

forall xi ∈ x do // calculate resets
if xi ∈ dom(Assign(l, σ j, li))

then x′i = Assign(l, σ j, li)(xi); // xi value is changed by the transition
else x′i = xi; // xi value does not change

end
end
guardActProcl = guardActProcl + 〈Guard(l, σ j, li)〉, σ j.processli

(x′));
exit_condl = exit_condl ∨ Guard(l, σ j, li);

end
processl(x0) , substitute(x, x0, guardActProcl)+ // substitute x by the initial values x0

[x | x(0) = x0, ẋ = fl ↓ Inv(l) ⇓ invl].guardActProcl;
end
forall (l, x) ∈ Init do

initProcessl,x , processl(x);
end
return process and initProcess;

end� �
Algorithm 6.1: Transformation of hybrid automaton to BHPC

6.3.1 Hybrid automata and BHPC

We give special treatment for hybrid automata (HA, Section 3.3.6) and show how it
can be translated to BHPC.

Hybrid automata can be easily transformed to the BHPC. A simple Algorithm 6.1
for this procedure is presented.

• Every initial state is transformed to an invocation of the corresponding process
with the corresponding initial values.

• All locations are transformed to the corresponding processes.

• All outgoing transitions of the particular locations are collected to the corre-
sponding sets of the exit conditions, the action prefixes and the resets, and then
added to a generalised choice.

Remark 6.3.1. There are no trajectory prefixes with zero duration (however there
exists an empty trajectory that was introduced for the technical reasons) in the BHPC,
while in the hybrid automata a system can leave a location immediately. Therefore
for the straightforward translation we add a choice with all exit transitions with the
dynamics. �

All processes are transformed according to Schema 6.2. In the schema l is a current
location, fl are flow conditions in the current location, and Inv is an invariant of the

96

i
i

i
i

i
i

i
i

6.3. BHPC     

current location. In the choice all outgoing transitions are listed (with the guards Guard
and the action prefixes (labels) σ). Assign is extended, i.e., if a variable is not in the
reset map, then it is considered to be a part of the map, but with an unchanged value.
Every location is transformed in the same manner.

processl(x0) ,
∑

∀(l,σ j,li)∈E

(〈
Guard(l, σ j, li)

〉
.σ j.processli

(
Assign(l, σ j, li)

))
+x

∣∣∣∣∣∣∣∣ x(0) = x0, ẋ = fl(x)

y Inv(l)

wwwwwwwwwww�
∨

∀(l,σ j,li)∈E

Guard(l, σ j, li)

 .∑
∀(l,σ j,li)∈E

(〈
Guard(l, σ j, li)

〉
.σ j.processli

(
Assign(l, σ j, li)

))
(6.2)

Remark 6.3.2 (Initial state). In the BHPC we do not define an initial state at the time
0 in contrast with hybrid automaton. If in the hybrid automaton an initial state is
unique, then in the BHPC the initial state is a left limit of the initial trajectory. We
overcome this problem by adding a choice amongst direct exits with trajectory prefix
succeeded by the exits. �

Remark 6.3.3 (Different semantics of HA). In some definitions of hybrid automata it
is allowed to take a discrete transition iff the invariant of the target location is satis-
fied after it. In such a case an additional condition is conjoined with correspond-
ing trajectory prefix exit conditions and process exit guards. It estimates invari-
ant condition of the target location with re-assigned values and can be defined in
the following way Inv(li)(Assign(l, σ j, li)) with the resulting expression Guard(l, σ j, li) ∧
Inv(li)(Assign(l, σ j, li)). �

Remark 6.3.4. Hybrid behavioural automata (Section 3.3.7) is a behavioural [Polder-
man and Willems, 1998] extension of hybrid automaton (Section 3.3.6). BHPC is a
mix of behavioural and process algebraic approaches. Therefore, a translation from
HBA to BHPC is even more natural than a translation of hybrid automaton to BHPC
(Section 6.3.1). By applying according modifications to the Algorithm 6.1 we get such
transformation. �

We illustrate the application of the algorithm in the Example 6.3.5.

Example 6.3.5 (Thermostat). The thermostat example is described in Section 2.2.2. Hy-
brid automaton of the thermostat is depicted in Figure 5.5. Algorithm 6.1 transforms
it to the following BHPC model.

processOff(l0) ,
〈
l0 6 tempOn

〉
.on.processOn(l0)+[

l
∣∣∣ l(0) = l, d

dt l = −k ∗ l
y l > tempMin

www� l 6 tempOn
]
.〈

l 6 tempOn
〉
.on.processOn(l);

processOn(l0) ,
〈
l0 > tempOff

〉
.off.processOff(l0)+[

l
∣∣∣ l(0) = l, d

dt l = k(h − l)
y l 6 tempMax

www� l > tempOff
]
.〈

l > tempOff
〉
.off.processOff(l);

97

i
i

i
i

i
i

i
i

6. BHPC     

initProcessOff,l0 ,processOff(l0);

�

6.4 BHPC and simulation languages

Simulation languages are specialised languages designed for simulation, while Be-
havioural Hybrid Process Calculus is a general framework for theoretical analysis of
hybrid phenomena itself, as well as modelling and analysis of hybrid systems. There-
fore, a comparison is not altogether appropriate. Nevertheless we look at the principal
similarities and differences

Bond graphs and BHPC

Bond graphs (Section 3.3.12) represent the energy-based interaction structure of some
system. It implies that bond graphs are restricted to the systems which can be natu-
rally represented using energy as the basic concept. In contrast, BHPC is a general
framework for modelling and analysis of the dynamical systems, based on such funda-
mental concepts, as trajectories and actions. An effort to connect the bond graphs and
hybrid process algebras was made in Cuijpers [2004, p.96–140], Cuijpers et al. [2004]
by constructing constitutive hybrid processes. This example shows that to some extent
interaction of several different formalisms gives some positive results in modelling of
the certain classes of hybrid systems. One of the future research directions for BHPC
can be establishing connection with bond graphs.

Modelica and BHPC

ModelicaTM (Section 3.3.13) represents a pragmatic approach to simulation of physical
systems. It can be used to model certain classes of hybrid systems. In ModelicaTM in case
of specified events, a simulation of physical process can be interrupted and modified
according to the specification. Non-determinism is not supported, in contrast to BHPC,
where a nondeterministic choice for both signals and actions is available. Summarising,
BHPC and ModelicaTM are more complementary, than competing, approaches.

Currently research is carried on in using ModelicaTM and Dymola as simulation
platform for a subset of BHPC [van Putten, 2006].

6.5 Conclusions

In this chapter Behavioural Hybrid Process Calculus was compared to several impor-
tant frameworks for modelling and analysis of hybrid systems. It was shown that
BHPC has most of the features supported by other approaches. While it may miss
some strengths of specialised approaches as the simulation languages or Φ-calculus
(mobility), it has some strong points too. The behavioural world-view allows to handle
any type of continuous-time behaviour while some approaches are restricted to ODE/-
DAE. Furthermore, hybrid strong bisimulation is a congruence, and it is indispensable
for modular design of large systems.

98

i
i

i
i

i
i

i
i

First it marked out a race-course, in a sort of circle,
(‘the exact shape doesn’t matter,’ it said,) and then
all the party were placed along the course, here and
there. There was no ‘One, two, three, and away,’
but they began running when they liked , and left
offwhen they liked, so that it was not easy to know
when the race was over. However, when they had
been running half an hour or so, and were quite
dry again, the Dodo suddenly called out ‘The race
is over!’. . .

Lewis Carroll 7
Simulation of Behavioural Hybrid

Process Calculus

7.1 Introduction

Simulation is a well-established technique for development and analysis of dynamical
systems. It is widely used in industry and academia. Moreover, development of
complex embedded systems that contain a multitude of diverse components is hardly
possible without employment of simulation tools. Frequently simulation is used
in building models of designs or existing systems (especially in biology, chemistry,
physics, social sciences, etc.) that adequately model reality.

Often such systems or adequate abstractions of them exhibit hybrid phenomena.
That is where simulation of hybrid systems comes in play. And while it is not so
widely spread as simulation of continuous-time systems, it is getting common rapidly,
especially in the embedded systems area.

We will distinguish two important simulation application areas.

• Simulation in model development.

• Simulation in system analysis.

These two exercises emphasise slightly different aspects of simulation, but the generic
features are common.

Simulation in model development Simulation is regularly used as a model devel-
opment tool. Usually it is employed to carry on several procedures.

• While building a model, simulation is used to ascertain that the components of
the model and the model itself behave as expected.

99

i
i

i
i

i
i

i
i

7. S  B H P C

• If an error-trace is provided, a simulation tool can help to examine the path that
leads to an error and analyse the reasons of the error.

Moreover, sometimes simulation is employed in a testing manner. The model can be
validated against the real system (and inverse) by feeding the same inputs to both of
them, and then comparing the outputs.

Simulation in system analysis Simulation is frequently employed as a system anal-
ysis tool. Given a model, a set of experiments is designed to probe the system.

• Chosen properties can be tested. Such tests do not guarantee that the properties
hold always, but nevertheless they provide a beneficial insight on the systems’
behaviour.

• Experiments for performance analysis can be designed and carried out. The
results provide a good intuition on the efficiency of model, assist in detecting
bottlenecks and inefficient components.

7.1.1 Simulation of continuous and discrete systems

Simulation of hybrid systems, as hybrid systems itself, has two principal precursors,
i.e., simulation of continuous and of discrete systems. Simulation of continuous sys-
tems is a well-established industrial practice and area of research. However, simulation
of discrete systems is often substituted by testing in software industry and verification
(e.g., model checking) in computer science.

Simulation of continuous systems Simulation of continuous systems is an estab-
lished area in science and is regularly used in industry. There is a plentitude of indus-
trial and academic tools for simulation of continuous systems. Some of them support
only simulation of ordinary differential equations1 (ODE), but tools supporting dif-
ferential algebraic-equations2 (DAE) are getting commonplace too. In simulation of
hybrid systems simulation of continuous systems can be seen as a simulation of the
continuous part of hybrid systems with some additional requirements (e.g., an accu-
rate event detection) and therefore results of research in this area can be reused in
simulation of hybrid systems. For more information about simulation of continuous
systems see Cellier [1991], Zeigler et al. [2000].

Simulation of discrete systems Simulation of discrete systems is an important area
in computer science as well as in control theory. Usually it is simulation of various
types of automata (e.g., Bengtsson et al. [1998], Kaynar et al. [2002], Behrmann et al.
[2004]), process algebras (e.g., Bolognesi and Brinksma [1987], van Eijk [1988], Eertink
[1994]) in computer science or simulation of discrete event systems [Zeigler et al., 2000]
in control theory.

1An ordinary differential equation is a relation that contains functions of only one independent variable,
and one or more of its derivatives with respect to that variable. It’s general form is F(x, y, ẏ, ÿ, . . . , y(n)) = 0.

2A differential-algebraic equation is a relation in which the derivatives are not (in general) expressed
explicitly, and typically derivatives of some of the dependent variables may not appear in the equations at
all. General form of such equations is F(ẋ, x, y, t) = 0, where x ∈ Rn, y ∈ Rm are differential and algebraic
variables, respectively.

100

i
i

i
i

i
i

i
i

7.1. I

7.1.2 Simulation of hybrid systems

Simulation of hybrid systems combines continuous-time and discrete behaviour simu-
lation. Unfortunately, it is not enough just to put together these two types of simulators,
because additional means are needed to deal with interaction of the two worlds. There-
fore, new procedures and techniques are designed to deal with hybrid phenomena as
well as continuous-time and discrete behaviours.

There exists a number of techniques for simulation of hybrid systems. The major
ones [van der Schaft and Schumacher, 2000, p.25–30] are the following.

The smoothing method. The hybrid model is transformed (or attempt is taken to
transform) to a smooth model that approximates selected aspects of the hybrid
model. Such an approach gives an impression of being superfluous, i.e., a
system is modelled as a hybrid, and then again transformed to a smooth system.
Potential benefit is that it might be easier to model a system as hybrid. For more
information see van der Schaft and Schumacher [2000, p.25–26].

The event tracking method. It is the prevalent way of simulating hybrid systems.
The simulation sequence is the following (slightly modified version from van
der Schaft and Schumacher [2000, p.26–28])

1. Event handling:

• (Re-)Initialisation of a (new) continuous state;
• Determination of a (new) mode.

2. Simulation of the continuous-time dynamics within a given mode.

3. Event detection.

First of all, the initial conditions (the initial mode/process and the initial signal
values) are set. Then the continuous-time behaviour is simulated until an event
is detected. If an event occurs, the exact (or the closest conceivable) event time
and the corresponding continuous state (signals) values are computed. Then the
new values and the mode are determined and the simulation cycle repeats.

The time-stepping method. In this approach events are not tracked. Some discreti-
sation scheme is chosen, and then the hybrid system is approximated by the
discretised system. The approach may work quite well for the specific classes of
hybrid systems with carefully chosen discretisation schemes. The broader dis-
cussion and an example are available in van der Schaft and Schumacher [2000,
p.28–30].

Event tracking algorithms The event tracking method is the de facto standard of hy-
brid systems simulation. However, it comes in several different flavours. Andersson
[1994, p.116] discusses the application of this technique to object-oriented simulation
of hybrid systems. Use of the event tracking in 20-sim tool(Section 7.9) is discussed
in Broenink and Weustink [1996]. Mosterman and Biswas [2002] discusses the ap-
plication of the event tracking method for simulation of physical dynamical systems.
Simulation of hybrid systems in Ptolemy II (Section 7.9) is described in Liu and Lee

101

i
i

i
i

i
i

i
i

7. S  B H P C

[2002]. Barton and Lee [2002, p.266] uses a classical approach with small variations for
hybrid dynamical systems modelling and simulation framework.

Meanwhile Fabian et al. [1998] adopt a simulation algorithm for Hybridχ (Section 5)
by adding a treatment for processes. The algorithm proceeds in the following order:

1. The system is initialised (the state and the processes).

2. While there are active processes and simulation time is not finished.

(a) While there are active processes:

i. Non-blocking statements of the active processes are executed;
ii. Initial states are calculated;

iii. The conditions are checked and the processes are sorted to active and
inactive.

(b) If there are time-outs, which will be activated sooner than a minimal solver
step, the processes which were blocked by time, are activated and the cycle
in step (2) is repeated.

(c) If the minimal solver step is shorter than the time to the nearest time-out,
DAE are solved and the cycle (2) is repeated.

7.2 Behavioural Hybrid Process Calculus simulation
algorithm

In this section we propose a technique for simulation of Behavioural Hybrid Process
Calculus based on the modified event tracking algorithm presented in Section 7.1.2.
Part of the algorithms presented in this section were tested in a prototype implementa-
tion (Appendix D) and Krilavičius and Schonenberg [2005], Schonenberg [2006], van
Putten [2006].

7.2.1 Language

Different operators are used in process algebraic languages. Sometimes certain opera-
tors are used for theoretical language development and have corresponding versions
(sometimes slightly different) adapted for a practical use. We choose the following
operators for simulation of BHPC:

B ::= 0 a(v).B
[

f
∣∣∣ Φ] .B 〈Pred〉 .B

∑
i∈I

Bi B ‖HA B new w.B B [σ] P

Notice that several operators from the original language are restricted, and a guard
operator is added.

• An original action prefix (5.2) is replaced by the parameterised action prefix
(Section 5.7.1). It allows to change values of trajectory qualifiers instantaneously
(by relating them with an action prefix). Moreover, if there are no parameters, it
behaves in the same way as ordinary action prefix.

102

i
i

i
i

i
i

i
i

7.2. B H P C  

• Additional requirements are added to a trajectory prefix (5.3). We require that
all trajectories in a trajectory prefix do not bifurcate, but only have different
durations, i.e., ∀ϕ,ψ ∈ Φ holds ϕ ≺ ψ or ψ ≺ ϕ. Such restrictions allow to
treat all trajectory prefixes as defined by ODE/DAE with initial conditions and
different simulation time.

• A guard operator (〈Pred〉 .B) is added.

• Hiding (new w.B) is restricted to action prefixes (for simplicity reasons, see below
for the explanations).

• Renaming (B [σ]) is restricted to action prefixes.

It diminishes flexibility, but does not limit expressiveness of calculus excessively.
In some cases instead of using processes as templates one will have to define
several processes with different trajectory qualifiers.

A possible alternative solution is to use a syntactic renaming, like macro com-
mands that substitute parameterisable parts of processes before simulation. Be-
sides, our main intention behind renaming of qualifiers is the same, i.e., to give
opportunity to use processes definitions as templates.

The original BHPC language is rich with diverse mathematical symbols. A set of
characters and signs from Greek and Latin alphabets augmented with mathematical
symbols is used to define processes. Therefore, tools dealing with the calculus should
provide necessary means to handle such collections of symbols. A special editor is
necessary to support it. However, a traditional approach in such a case is to design an
alternative ASCII3 based notation and provide tools that can translate it to the original
language using, e.g., LATEX4.

There are at least two common practices in designing a new (an alternative) lan-
guage.

1. An alternative version of the original language can be designed. It is just an ASCII
notation for the original language, and usually is more useful as a language for a
tool that is built as a proof of concept, an educational tool or an experimental tool,
used for teaching or the further formalism development, respectively.

2. An extended version of the language with additional constructs and structures
can be devised. It is the language for a tool that is aimed at the bigger case
studies or use in industry.

Because our objective is to design the basic algorithms for BHPC simulation, we
choose the first option. See van Putten [2006] for a detailed description of the ASCII
version of BHPC.

7.2.2 Simulation of process algebras

Essentially, simulation of process algebras is based on the correct application of struc-
tural operational semantics (SOS) rules [Plotkin, 1981]. Operational semantics provide

3For more information about ASCII consult http://en.wikipedia.org/wiki/ASCII.
4See http://www.latex-project.org/.

103

http://en.wikipedia.org/wiki/ASCII
http://www.latex-project.org/

i
i

i
i

i
i

i
i

7. S  B H P C

information necessary for a stepwise execution of process algebraic expressions. For
every process algebraic operator rules define all allowed executions. However, not all
rules can be applied straightforwardly.

Parallel composition operator requires special treatment. Usually an expansion law
(see Section 5.6 for the BHPC version) or linearization [Usenko, 2002] are exploited to
deal with it.

Informally, linearization is a procedure of transforming a process algebraic expres-
sion into an equivalent system of linear process equations, i.e., a process algebraic ex-
pression containing only basic process algebraic operators (action prefix, alternative
composition) and a special form of recursion [Usenko, 2002].

The expansion law expresses the parallel composition of the choice of processes as
a choice of the processes by pushing the parallel composition one step further.

In BHPC case application of the rules is almost always straightforward, with ex-
ception of parallel composition. It is transformed according to the modified expansion
law, and then the choice rule is applied.

However, certain complications emerge from the specifics of the expansion law.
To separate an initial part of trajectory prefix an information about evolution of the
trajectories is needed, and usually it is not available. Thereby we adapt the expan-
sion law in such a way that trajectory prefixes part is not resolved, i.e., all possible
combinations (or parallel compositions) of processes starting with trajectory prefixes
are created. Then, a chosen combination is simulated until evolution conditions are
satisfied or another choice (stop simulation of the chosen combination) presents itself.

Some of techniques for process algebras simulation are described in van Eijk [1988],
Eertink [1994].

7.2.3 Abstract simulation algorithm for BHPC

The BHPC simulation algorithm is based on the event tracking approach (discussed
in Section 7.1.2). It is tailored to specifics of process algebraic simulation, in particular
Behavioural Hybrid Process Calculus (Chapter 5).

Remark 7.2.1. Some functions used in this chapter are used to abstract from data
types and solvers. Consequently, pseudo code is provided only for the functions that
define main concepts of BHPC simulation. However, all used functions are listed and
described in Appendix C. �

In the algorithm we abstract from the implementation issues, because different
approaches can be advantageous in different development frameworks.
An abstract simulation procedure (Algorithm 7.1) follows these steps.

1. The system is initialised.

2. While a current simulation time is less than the maximal simulation time and no
other stop conditions have occurred, a transition is taken and the state is updated.
When the simulation time has finished or other stop condition has occurred, it is
halted.

Moreover, we assume that complete specification is globally accessible.
The essential part of simulation is hidden in TakeTransition (Algorithm 7.2).

104

i
i

i
i

i
i

i
i

7.2. B H P C  

� �
types

record S
t : T ;
lQ: L  S  Q ;
p : P ;
\∗ a process expression and pointers to the corresponding qualifiers sets ∗\

end
record S

continue: B ;
msg : T ;

end
end

algorithm BHPC_Simulation (SimTime:T; Q0:Q; p0:P);
var

status : S ;
state : S ;

begin
(state, status) := Initialise(p0,Q0);
while (state.t < SimTime and status.continue) do

(state,status) := TakeTransition(state, status, SimTime);
end
print(status.msg);

end� �
Algorithm 7.1: Simulation of BHPC

• The process expression is transformed to so-called normal form (see Section 7.2.4
for an explanation and a transformation algorithm).

• A non-deterministic choice is made (see Section 7.3 for different ways to treat
non-determinism) to proceed with discrete or continuous transitions.

◦ If the discrete course is chosen, a discrete transition is selected (Algo-
rithm TakeDiscreteTransition).

◦ If the continuous course is chosen, a continuous transition is selected (Al-
gorithm TakeContinuousTransition).

The initialisation step is defined in Algorithm 7.3. It is a simple procedure, i.e.,
initial values and process are assigned to the corresponding state values and the
simulation time is initialised.

Remark 7.2.2. It maybe necessary to store values of qualifiers derivatives depending
on the chosen type of continuous behaviour and solver. In such a case sets of qual-
ifiers should be extended accordingly to store all important information. Moreover,
initialisation procedure should take it into account. �

105

i
i

i
i

i
i

i
i

7. S  B H P C

� �
algorithm TakeTransition(state :S ; status :S ; T:T);
begin
/∗ state : t − time, Q − values of qualifiers, p − process ∗/
(state, status) := transfToNF(state, status);
if (status.cont and !isEmpty(state.p))

choice := NondetChoose(state.p);
case typeOfChoice(choice)

continuous:
(state, status) := TakeContinuousTransition(state, status, choice, T);

discrete :
(state, status) := TakeDiscreteTransition(state, status, choice);

end
end
return (state, status);

end� �
Algorithm 7.2: TakeTransition

� �
algorithm Initialise(p0:P; Q0:Q);
var

status : S ;
state : S ;

begin
/∗ state : t − time, Q − values of qualifiers, p − process ∗/
status.continue := true ;
status.msg := "Succesful termination";
state.t := 0;
state.p := p0;
InitialiseQualifiers(state.lQ, Q0);
return(state, status);

end� �
Algorithm 7.3: Initialise

7.2.4 Transformation to normal form

In Algorithm 7.2 before taking a transition a process algebraic expression is trans-
lated to BHPC normal form. Such an approach makes simulation of parallel composition
easier.
Definition 7.2.3 (BHPC normal form). We will call a BHPC normal form a process al-
gebraic expression of the following form:∑

i∈I
bi.Bi +

∑
j1∈J1
···

jm∈Jm

(
. . .

([
f j1

∣∣∣ Φ1

]
.B j1 ‖

H1
A1

[
f j2

∣∣∣ Φ2

]
.B j2

)
‖

H2
A2
. . . ‖Hm−1

Am−1

[
f jm

∣∣∣ Φm

]
.B jm

)

106

i
i

i
i

i
i

i
i

7.2. B H P C  

� �
algorithm transfToNF (state :S , status :S)
var state ′, state ′′: S;
begin

if (!isNormForm(state))
case (state.p)

0: state := setDeadlock(state);
B′ [σ]:

state ′ := setState(B′, state);
if !isNormForm(state ′) then (state ′, status) := transfToNF(state ′, status); end
state := rename(state ′, σ);

new w.B′:
state ′ := setState(B′, state);
if !isNormForm(state ′) then (state ′, status) := transfToNF(state ′, status); end
state := hide(state ′, status);

〈Pred〉 .B′:
if !Evaluate(Pred)

then state.p := setDeadlock(state);
else

if !isNormForm(state)
then (state ’ , status) := transfToNF(state, status); end

state := setProcess(B′, state, state ′);
end∑

i∈I Bi:
forall i ∈ I do

state ′ := setState(Bi, state);
if (!isNormForm(state ′))

then (state ′, status) := transfToNF(state ′, status); end
state := replaceChoiceComp(state, state ′, i);

end
B1 ‖

H
A B2:
state ′ := setState(B1, state); state ′′ := setState(B2, state);
if !isNormForm(state ′) then (state ′, status) := transfToNF(state ′, status); end
if !isNormForm(state ′′) then (state′′, status) := transfToNF(state ′, status); end
(status, state) := applyExpLaw(state ′, state ′′, A, H, status);

P:
(status, state) := resolveRecursion(state, status);
if !isNormForm(state) then (state, status) := transfToNF(state, status); end

end
return (state, status);

end� �
Algorithm 7.4: Transformation to normal form

107

i
i

i
i

i
i

i
i

7. S  B H P C

Moreover, parallel compositions of trajectory prefixes can be enclosed by renaming,
i.e., can have a form∑

j1∈J1
···

jm∈Jm

(
. . .

(([
f j1

∣∣∣ Φ1

]
.B j1 ‖

H1
A1

[
f j2

∣∣∣ Φ2

]
.B j2

)
[σ] ‖H2

A2
. . . ‖Hm−1

Am−1

[
f jm

∣∣∣ Φm

]
.B jm

)
[σ′] . . .

)
[σ′′]

�

Remark 7.2.4. Notice that usually normal form refers to an expression of form
∑
i∈I

bi.Bi+∑
j∈J

[
f j

∣∣∣ Φ j

]
.B j. However, in the BHPC case to transform any process expression to

such a form a priori information about the trajectories is necessary (see Section 7.2.2).
Another approach is simulation of separate trajectory prefixes, but that is not feasible.
Therefore we choose the above defined form as easiest way to simulate BHPC. �

We use normal form for two main reasons.

• It provides separated discrete and continuous behaviours in the form convenient
for simulation.

• The modified expansion law and other procedures allow to transform almost
any process algebraic expression to such form in a finite number of steps. We
provide an explanation of the pathological cases and the modified expansion law
below.

To transform a parallel composition to a normal form an expansion law is used. Un-
fortunately, as was mentioned in Section 7.2.2, application of the expansion law (The-
orem 5.6.3) is not trivial because it needs an oracle. To solve this problem we use the
normal form and present a modified version of expansion law. Basically, it is just an
intermediate form from the proof the expansion law (Theorem 5.6.3).

Theorem 7.2.5 (Modified Expansion Law). Let

B =
∑
i∈I

bi.Bi +
∑
j∈J

[
f j

∣∣∣ Φ j

]
.B j, C =

∑
k∈K

ck.Ck +
∑
l∈L

[
gl

∣∣∣ Ψl

]
.Cl

for some process Bi,B j,Ck and Cl, actions bi and ck, trajectories-prefixes ϕ j and ψl, index sets
I ∩ J = K ∩ L = ∅. Then

B ‖HA C =∑
i∈I

bi<A

bi.
(
Bi ‖

H
A C

)
+

∑
k∈K
ck<A

ck.
(
B ‖HA Ck

)
+

∑
a=bi=ck∈A

a.
(
Bi ‖

H
A Ck

)
+ (7.1a)

∑
j∈J
l∈L

([
f j

∣∣∣ Φ j

]
.B j ‖

H
A

[
gl

∣∣∣ Ψl

]
.Cl

)
(7.1b)

Notice, that this version of expansion law does not resolve the parallelism of the continuous
part. It resolves discrete behaviour and collects all trajectory prefixes together while preserving
the order of the parallel composition.

108

i
i

i
i

i
i

i
i

7.2. B H P C  

Proof. The proof of Theorem 7.2.5 follows directly from the expansion law (Theo-
rem 5.6.3) and its proof.

Expression (7.1a) defines the expansion law for the discrete components. A nice
explanation and detailed proof of the expansion law for discrete actions are given
in Milner [1989, p.96–97].

Expansion of continuous components is defined by (7.1b). How to achieve such
syntactical form is shown in the proof of the original expansion law (Theorem 5.6.3)
(moving choice outside of parallel composition). �

We present Algorithm 7.4 that transforms almost any process algebraic expression
to a normal form, and afterwards elaborate on the potential problems and cases, when
transformation is not possible. Unfortunately, the termination of transfToNF is not
guaranteed in general. The problem stems from the specifics of recursion.

Recursion In general, recursion just tells that simulation has to proceed with an-
other process expression. The switching from one expression to another includes
initialisation of the new process expression.

However, processes like B , a.B+B can be encountered. Such processes (equations)
are called not guarded [Milner, 1989, p.65] and there is no nice theoretical escape from
such situation. Of course, such processes can be disallowed, i.e., a compiler can
perform a static check and ask to modify not guarded processes.

The task can be handed over to a simulation engine that, after repeatedly trying to
resolve recursion for n times (with n chosen by an user), can ask the user for a help,
e.g., to choose another branch of execution.

Invocation of this algorithm can be augmented with a recursion counter that can
be used to carry information about the depth of recursion. If recursion is not resolved
until a certain depth, then the normalisation procedure can be stopped and a status
variable used to carry information about the failure.

In Algorithm 7.4 we do not explicitly use the above defined technique to detect not
guarded recursion.

Renaming Recall that we use only renaming of actions. If a process is in a form a.B,
then SOS rules for renaming are applied straightforwardly. Otherwise the process is
normalised and then renaming is applied to a normal form. However, because we do
not resolve parallel composition of trajectory prefixes, renaming becomes somehow
more complicated.

We define the following rule for renaming of normal form. Let

B =
∑
i∈I

bi.Bi +
∑
j∈J

[
f j

∣∣∣ Φ j

]
.B j, C =

∑
k∈K

ck.Ck +
∑
l∈L

[
gl

∣∣∣ Ψl

]
.Cl

Then(
B ‖HA C

)
[σ] =(∑

i∈I
bi<A

bi.
(
Bi ‖

H
A C

)
+

∑
k∈K
ck<A

ck.
(
B ‖HA Ck

)
+

∑
a=bi=ck∈A

a.
(
Bi ‖

H
A Ck

)
+

109

i
i

i
i

i
i

i
i

7. S  B H P C

∑
j∈J
l∈L

([
f j

∣∣∣ Φ j

]
.B j ‖

H
A

[
gl

∣∣∣ Ψl

]
.Cl

))
[σ] =

∑
i∈I

bi<A

σ(bi).
(
Bi ‖

H
A C

)
+

∑
k∈K
ck<A

σ(ck).
(
B ‖HA Ck

)
[σ] +

∑
a=bi=ck∈A

σ(a).
(
Bi ‖

H
A Ck

)
[σ]+

∑
j∈J
l∈L

([
f j

∣∣∣ Φ j

]
.B j ‖

H
A

[
gl

∣∣∣ Ψl

]
.Cl

)
[σ]

Hiding Almost the same as renaming, only selected actions are renamed to τ and it
is not applied for trajectory prefixes (trajectory qualifiers).

Guard If a guard is true, then we get the succeeding process, otherwise we get 0.

Choice Every component of choice is transformed to a normal form and transitions
are grouped.

Parallel composition Every component of parallel composition is normalised and
then the modified expansion law is applied.

In B prototype we use a simplified treatment of processes parametrisation.
We use parameters as shortcuts to initialise qualifiers. Moreover, we access the last
simulation value using the corresponding qualifier identifier. See D.1.1 for the details.

7.2.5 Simulating discrete events

TakeDiscreteTransition takes care of discrete transitions in simulation of BHPC. It
performs the chosen action prefix, calculates new process expression, updates quali-
fiers values if necessary and returns state.

In general, simulation of discrete events (sometimes called event iteration5) includes
several steps and vary for different approaches. The general procedure is the following.

1. A set of actions becomes available for execution. An action is chosen and ex-
ecuted. Depending on the formalism the system may choose to proceed with
continuous behaviour or

• If it is one process, an action is chosen and executed;

• In approaches, that do not use expansion law to flatten parallel composition,
the action is selected according to the semantics of formalism.

2. Executing the action (defined in the previous step) may include:

• Recalculation of state;

• Activation of other events.

3. The system returns to the first step.

5Not to be mixed with event-tracking.

110

i
i

i
i

i
i

i
i

7.2. B H P C  

Eertink [1994], van Eijk [1988] discuss techniques for synchronisation of ordinary and
parametrised action prefixes.

Synchronisation of actions for Omola is discussed in Andersson [1994], for Hybrid
χ in Fabian [1999].

Remark 7.2.6 (Simulating discrete events and discrete simulation). Here we use a no-
tion of simulating discrete events to refer to a part of the hybrid systems simulation
process dealing with discrete events. However, resembling notions of discrete simula-
tion or discrete event simulation have several different meanings. These notions may
refer to the use of discrete time in the simulation process or an abstraction from
continuous-time behaviour and simulation of discrete behaviour only. �

7.2.6 Simulating continuous-time behaviour

Roughly, simulation of continuous-time behaviour in hybrid systems is simulation of
continuous systems (Section 7.1.1) with events detection. It consists of one or more
steps, i.e., the behaviour to be simulated is chosen (sometimes non-deterministically)
and then simulated for a specified time or until a specified event(s) occurs. Different
ODE/DAE solvers can be used, the integration step size may be adjusted.

In BHPC simulation Algorithm 7.5 takes care of the simulation of continuous-time
behaviour. The modified expansion law provides us with a set of parallel compositions.
Therefore, we adopt the following simulation procedure.

• All possible combinations of parallel trajectory prefixes are created.

• Combination is chosen and simulated while monitoring the progression of sim-
ulation. In case of predefined events corresponding actions are taken.

Combining parallel trajectory prefixes The normal form (Definition 7.2.3) provides
the following process algebraic expression∑

j1∈J1
···

jm∈Jm

(
· · ·

([
f j1

∣∣∣ Φ j1

]
.B j1 ‖

H1
A1

[
f j2

∣∣∣ Φ j2

]
.B j2

)
‖

H2
A2
· · · ‖

Hm−1
Am−1

[
f jm

∣∣∣ Φ jm

]
.B jm

)

possibly with renaming operators.
Then we can collect all possible trajectory prefixes combinations while preserving

order of parallel compositions and renaming operators.([
f j1,1

∣∣∣ Φ j1,1

]
,

[
f j2,1

∣∣∣ Φ j2,1

]
, . . . ,

[
f jm,1

∣∣∣ Φ jm,1

])
([

f j1,2

∣∣∣ Φ j1,2

]
,

[
f j2,1

∣∣∣ Φ j2,1

]
, . . . ,

[
f jm,1

∣∣∣ Φ jm,1

])
· · · · · · · · · · · ·([

f j1,|J1 |

∣∣∣∣ Φ j1,|J1 |

]
,

[
f j2,|J2 |

∣∣∣∣ Φ j2,|J2 |

]
, . . . ,

[
f jm,|Jm |

∣∣∣ Φ jm,|Jm |

])
We get K = |J1| · |J2| · · · · · |Jm| combinations. Trajectory prefixes in every combination are
composed preserving the order and renaming. Notice, that renaming is not important
for trajectory prefixes, but should be preserved for the succeeding processes. Therefore,

111

i
i

i
i

i
i

i
i

7. S  B H P C

some data structures must be used to store this information. The combination is
chosen non-deterministically and simulation is started. The simulation is monitored
for events, and the following actions are taken.

• In the case of deadlock the simulation is stopped, the status and state variables
are updated accordingly.

• In the case, when the maximal simulation time is expired, the simulation is
stopped, and the status and state variables are updated.

• If the evolution conditions are to be violated and it is not possible to exit, then
the simulation is stopped and the corresponding variables are updated. If it is
possible to exit, then the violation event is changed to the must-exit event (inside
Algorithm Solve).

• If the can-exit event is generated, then the continuous simulation is stopped, the
state and status are updated.

The abstract algorithm is presented in Algorithm 7.5. Different versions of the algo-
rithm may be defined depending on how non-deterministic choice to exit or continue
is implemented. E.g., in this version for simplicity reasons we do not postpone an
exit, i.e., if it is possible to exit, we stop continuos simulation, update the state and
allow to choose how to continue. Nevertheless, we believe, that the presented version
conceives the essence of the proposed method. Moreover, our experience from the im-
plementation of B prototype shows that a structure of algorithm often depends on
the chosen data structures, programming language and other design/implementation
choices.

We concisely desribe some of the main functions used by the algorithm.

• All combinations of trajectory prefixes are generated by Algorithm CreateCom-
binations.

• Algorithm NondetChooseCombination nondeterministically chooses a combina-
tion from a set of combinations.

• The set of events is generated by Algorithm DefineEvents. It includes the events
necessary to properly treat non-deterministic exits of trajectories. In trajectory
prefix a set of trajectories can be represented by an ODE (or DAE) together
with the corresponding exit conditions. It induces a continuous choice between
continuations and exiting. In Section 7.3 we discuss possible ways to make such
choice.

• Combination is simulated in Algorithm Solve. It takes a set of trajectory pre-
fixes and halting conditions, extracts equations, initial conditions and halting
conditions, and supplies it to a numerical solver. The algorithm is data types
and numerical solver dependent, i.e., different solvers may have different syn-
tactic and semantic limitations. In some cases, the procedure can be complicated
technically, e.g., when a solver works as a library, then it may be necessary to
compile it together with equations.

112

i
i

i
i

i
i

i
i

7.2. B H P C  

� �
algorithm TakeContinuousTransition(state :S ,

status :S , choice:C , T:T)
var cs : C  TP ;

state ’ : S ;
comb : C ;

begin
cs := CreateCombinations(state, choice);
comb := NondetChooseCombination(cs);
events := DefineEvents(state, comb);
(event, state ’ , status, cs) := Solve(T, state, cs , events);
(state, status) = UpdateSimState(event, state ’ , status, comb);
return (state, status);

end� �
Algorithm 7.5: TakeContinuousTransition

• Algorithm UpdateSimState updates process expression in the state variable by
replacing it with the new process that is generated from the combination and
event that has stopped continuous simulation.

◦ If an event that completely stops simulation is generated then the process
expression is not changed.

◦ If the event is must-exit event then the corresponding expression(s) of the
form

[
f | Φ

]
.B is (are) replaced by an expression(s) B.

◦ If the event is can-exit event then the corresponding expression(s) of the
form

[
f | Φ

]
.B is (are) replaced by an expression(s)

[
f | Φ

]
.B + B.

Some functions appearing in Algorithm 7.5 are not explained here. These and other
functions used in this chapter are listed and described in Appendix C, Bhave prot and
http://www.cs.utwente.nl/tools/bhave.

Remark 7.2.7. In B prototype we use a simplified algorithm, where only certain
types of events and continuous behaviour are supported. Explanation of the approach
used in B prototype is provided in Appendix D. �

Simulating trajectory prefixes

In BHPC continuous behaviour is specified by the sets of trajectories. The sets of
trajectories can be represented in different ways, which conceptually are equivalent,
but during simulation should be treated differently.

• A trajectory is represented in such a way that its value at any time in the interval
can be easily computed (e.g., explicit functions).

• Trajectories are represented by implicit functions (ODE/DAE) that should be
solved in some special way, usually using numerical algorithm, to get the values
at a certain time moment. In fact, simulation is one of the ways to solve them.

113

http://www.cs.utwente.nl/tools/bhave

i
i

i
i

i
i

i
i

7. S  B H P C

Simulation of trajectories represented by explicit functions is almost trivial. Values
at any time can be easily calculated, event time can be estimated exactly (up to soft-
ware/hardware supported error bounds).

However, usually trajectories are represented by implicit functions (ODE/DAE).
Moreover, ODE/DAE are standard way to represent continuous behaviour in the
control theory. In such case ODE/DAE solvers are employed. In B prototype we
use Open Maple, that is a suite of functions that allows to access M algorithms
and data structures in compiled C or C++ program. It imposes certain limitations,
e.g., solver with stop conditions works only for ODE. At the same time, it provides
enough functionality for a prototype.

We provide some information about other ODE/DAE solvers below.

Consistent state (re-)initialisation The problem of consistent state (re)initialisation in
the simulation of Behavioural Hybrid Process Calculus emerges, when the processes
in parallel composition attempt to modify qualifiers values (e.g., trajectory prefixes).
Moreover, it is aggravated by the numerical and real number representation in com-
puter errors. In some cases, e.g., when the equivalent mathematical operations are
carried out in a different order, resulting values may slightly differ leading to an in-
consistency. That is an important issue, and more robust simulation techniques seem
to be in demand.

Remark 7.2.8 (Complex evolutions). In some cases, e.g., for cyclic evolutions like the
sine function, just initial values may be insufficient. In such a case values of derivatives
at initial time can be used. �

In general, the problem of consistent state (re)initialisation is usually related with
event detection and discrete event simulation (Section 7.2.5) problems, because most
of the time the exact location of an event and recalculation of the (continuous) state
influence the initial values for the next simulation step. A nice reference for some of
such problems is Brenan et al. [1991].

ODE/DAE solvers ODE/DAE solvers are the main engine in the simulation of con-
tinuous systems. There is a plentitude of solvers that use different algorithms, support
various types of equations (ODE/DAE), etc.

Typically such solvers use specialised numerical algorithms that give good approx-
imations of the equations being solved. Advanced solvers often use dynamical step
adjustment.

As was mentioned above, in B prototype we use M to solve ODE. It im-
poses some functionality and performance limitations, but is sufficient for a prototype.
However, for industrial strength tool it may be beneficial to explore other ODE/DAE
solvers. Here we provide references to some of them.

A theoretical background and an implementation (DASSL) are presented in Brenan
et al. [1991]. In Lee and Zheng [2005] linear multi-step methods (LMS), Runge-Kutta
methods and the first order RK method (also called forward Euler) are presented and
an application of RK2-3 ODE solver in HyVisual (Section 7.9) is explained. An intro-
ductory explanation of simulation of continuous and hybrid systems, and application
of various solvers are given in Taylor [1999]. Concise explanation of use of solvers in

114

i
i

i
i

i
i

i
i

7.3. N-

Ptolemy (Section 7.9) is presented in Liu et al. [1999]. Otter and Cellier [1995] discusses
problems related with higher index models.

Fabian [1999, p.111–122] discusses application of DASSL [Brenan et al., 1991] pack-
age in Hybrid χ (Section 7.9) simulator.

The development of the methods and tools to solve ODE/DAE is a very interesting
topic. However, in the context of simulation of hybrid systems the choice of the right
algorithms is more important than the development of such algorithms. Therefore
it is important to incorporate different solvers into a simulator and in such a way to
provide an opportunity to experiment with them.

7.3 Non-determinism

Non-determinism in discrete systems In computer science non-determinism was ex-
plicitly introduced by Rabin and Scott [1959], where a non-deterministic automaton is
defined as a machine with many choices in its moves. Therefore, by exhibiting the
same observable behaviour the system has a liberty to choose a target state from one of
several new states, whereas in deterministic system the target state is uniquely defined
by the source and the action.

Non-determinism in continuous systems A continuous system is called determin-
istic if an input and a current state uniquely define an output and a new state. Often it
is related to the so-called well-posedness property (e.g., De Schutter and Heemels [2004,
p.35]). Usually the property is required to hold.

Non-determinism in hybrid systems Usually a system is called deterministic if its
evolution is single valued w.r.t. the states and the inputs, i.e., the states and in-
puts uniquely determine the target state and the output. The system is called non-
deterministic, if the same input potentially leads to one of the several new states. In the
hybrid systems case such a definition is to vague, i.e., non-determinism can occur in
different parts of the systems, and it depends on the formalism. It occurs in the con-
tinuous and discrete parts of system, as well as in interaction between these two types
of behaviours. Non-determinism arises from various causes, e.g., high abstraction
of the model, incomplete knowledge about the system, or is introduced by parallel
composition.

• Non-determinism of actions is a phenomenon that occurs when a target state is
not defined uniquely by the source state and the action. An example of such
behaviour is a coffee machine, such that just by throwing in a coin you may get
coffee or tea non-deterministically. Such type of non-determinism in computer
science is often related with so-called silent actions [Milner, 1989, p.37–43] that
can be used to hide actions from the observers.

• Non-determinism of continuous systems may take different form in hybrid sys-
tems. In the BHPC’s trajectory prefix a set of trajectories can be represented by
differential equations together with the corresponding exit conditions. It induces
a continuous choice between continuations and exiting.

115

i
i

i
i

i
i

i
i

7. S  B H P C

One of the possible approaches that would work with simple dynamics, is to
choose non-deterministically a solution in this interval as an exit point (or the
point, where, again, the choice is made non-deterministically to continue with
the trajectory prefix, or to exit and to continue with the following process). We
employ this technique in B prototype because it is a prototype tool and
should handle only simple dynamics.

Yet another solution for this problem is to detect the moment when exit conditions
are enabled and then simulate in small steps choosing non-deterministically to
continue or to exit at every step, while the conditions are enabled. However such
a technique is very time consuming and is not suitable for performance sensitive
simulations.

• Non-determinism of switching time is a phenomenon usually present in hybrid au-
tomata (Section 3.3.6). Hybrid automata may take a discrete transition whenever
the guard expression evaluates to true. Moreover, in hybrid automata a guard
often evaluates to true in an interval, and consequently, the transition can be
taken non-deterministically in that interval. In the case of BHPC it corresponds
to non-determinism of continuous-time behaviour, because it is a choice between
different trajectories.

In the different formalisms the manifestation of non-determinism may vary, and
diverse solutions are used to deal with it. We list some of them.

• In some cases non-determinism is treated as an under-specification of the system
(e.g., in ModelicaTM [Fritzson and Engelson, 1998, Mod, 2005]). In piecewise affine
systems (Section 3.3.2) and mixed logical dynamical systems (Section 3.3.3) a
well-posedness requirement is assumed [De Schutter and Heemels, 2004, p.35].
It requires deterministic solutions of ODE/DAE. Therefore, non-determinism is
treated as an error and is not allowed.

• Non-determinism is resolved by the tool (translator, compiler, etc.). In other words,
it is left to be resolved by the implementation of a particular tool. It may appear
as a nice solution for the non-determinism, e.g., if the system consists of two
devices loaded non-deterministically, only one device can be loaded all the time
and in such a way it may expose the potential problem. At the same time it
causes some problems, e.g., if the same execution is taken all the time, all other
executions are skipped. Moreover, the choice of the execution usually depends
on the physical layout of the specification, and then the choices a or b (a+ b) and
b or a (b + a) can be resolved in a different way causing hard to detect problems.

This technique is adopted in the Hybrid χ simulator [Fabian, 1999, Hofkamp,
2001] (Section 7.9).

• Statistical methods can be used to resolve the choice, i.e., the choice is associated
with some distribution and is resolved respectively. Usually a uniform distri-
bution is used, but other distributions can be employed too. Such an approach
allows to explore different executions, but it causes some problems, illustrated
by an example, where the load is distributed between two parties, i.e., uniform
distribution divides the load evenly, and it is not necessary the case in the real
system. Besides, adding distributions on choices changes the semantics of the

116

i
i

i
i

i
i

i
i

7.4. V  

model, because non-determinism is not the uniform or any other distribution,
and in such a case hybrid-stochastic approaches (like Strubbe et al. [2003]) seem
more appropriate.

• Nondeterminism can be resolved by the user. Such an approach is one of the
most straightforward ways to implement non-determinism. However it would
require constant user interaction, and usually that is not convenient. A gen-
eralised version of such an approach is to use a scheduler [Kaynar et al., 2002].
The scheduler collects information about the choices and chooses according to
the collected information and the scheduling algorithm. Unfortunately, it gen-
erates significant overhead for the simulator, and if some particular scheduling
is known, then it rather should be a part of the specification, than the simulator.
However, such an approach provides a maximal control over the simulation
process (w.r.t. choices) and allows to explore different simulation scenarios.

All listed approaches have their strengths and weaknesses. A suitable solution for this
problem could be a simulation tool that allows a modeller to choose the appropriate
method to resolve the choice from the following list.

• Non-determinism is not allowed.

• The choice is resolved by the tool.

• The choice is resolved using some distribution (usually uniform).

• The choice is resolved by the scheduler (individual schedulers can be assigned
to the resolution points).

In B prototype to resolve non-determinism we adopt several of the discussed
techniques that, provide the best flexibility and are not to complex for a prototype
implementation. Therefore, the choice amongst action prefixes and trajectory prefixes
can be made either by user, or user may ask the tool to choose. In the second case
the tool makes choice based on the internal ordering. Moreover, the choice based on
internal ordering can be easily extended to use a random generator. And the choice to
exit or continue simulation of trajectory prefix is made by the tool.

7.4 Visualisation of models

Visualisation of technical problems dates back to da Vinci’s technical drawings, Egyp-
tian, Babylonian and Greek geometry, if not cave paintings. Nowadays visualisation
of technical problems is a standard practice in academia and industry. Modelling of
hybrid systems is no exception. Visual representation as well as textual, are frequently
used to represent such systems. Moreover, some formalisms per se are visual, and are
augmented by the corresponding textual languages for convenience.

In this stage of development we do not propose any visualisation approach for Be-
havioural Hybrid Process Calculus models. However, we believe, that trees, directed
graphs or automata like structures can be used to represent processes. Moreover, we
believe that in future object diagrams (accordingly modified) or block diagrams can be
used to represent BHPC processes.

117

i
i

i
i

i
i

i
i

7. S  B H P C

We discuss some of the most popular hybrid systems models visualisation tech-
niques to illustrate potential choices for BHPC.

Top and Akkermans [1994] separates several representation layers.

• In the technical (functional) layer the technical design representing main parts of
the system is defined. Object diagrams (explained below) are suitable for this
level.

• The physical layer is used to to define the actual physical processes of a system.
Bond graphs (Section 3.3.12) can be used in this layer.

• In the mathematical layer some mathematical formalism is used to describe a
mathematical structure of system. ODE/DAE are appropriate at this level.

A number of visualisation techniques for hybrid systems are known. Some of them
are discussed in Otter and Cellier [1995]. We will survey some of these techniques.

• Block diagrams [Hamon and Rushby, 2004, Stateflow] is one of the prevalent
visualisation methods. A system is divided into blocks that receive an input,
transform it according to some rules (equations) and output it. Blocks can
have memory, be constituents of other blocks and be composed of intercon-
nected blocks. S (Section 7.9) is based on the block diagrams modelling
paradigm.

• Object diagrams represent an object oriented approach to modelling of dynamic
systems. In contrast to block diagrams, physical objects are represented by
mnemonically shaped icons. Objects can be interconnected, consist or be integral
parts of other objects. Considerable advantages of this approach are encapsulation
and inheritance. Informally, encapsulation provides a means to hide internal
object details from the outside world. Inheritance allows the specific objects to
inherit properties of generic ones. Object diagrams are gaining a lot of popularity
lately, and are used in tools, e.g., ModelicaTM (Section 18).

Jovanovic et al. [2004] proposes a tree view representation for CSP [Hoare, 1985]
based hybrid formalism. It is convenient for browsing a model, but too cumbersome
for development [Jovanovic et al., 2004]. Thus, block diagrams are used in the devel-
opment process.

Samarin [2002] presents an example of purely visual simulation environment for
physical processes.

7.5 Visualisation of results

Simulation results usually represent the evolution of the system in time. At the ground
level it is represented by a mapping of state values and events to the time-line.

However, often only state values are mapped to the time line. In such a case graphs
(plots) are used to visualise simulation results. It corresponds to a combination of the
mathematical and physical layers in the Top and Akkermans [1994] terminology.

At the functional layer behaviour of the objects constituting the system can be
displayed as a 2D or 3D animation.

118

i
i

i
i

i
i

i
i

7.5. V  

Event traces or message sequence charts [Rudolph et al., 1996, ITU-T, 2000] ade-
quately represent behaviour of discrete systems. Graphs are adequate for the ordinary
continuous system. However, for hybrid systems a combined view is crucial. Several
approaches are proposed in Samarin [2002], Lee and Zheng [2005], Hedlund [1999,
p.74], but none of them are satisfactory.

We will investigate principal visualisation techniques of dynamical systems and
propose a combined view in the forthcoming sections.

7.5.1 Graphs

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Velocity

time (sec)

Figure 7.1: Velocity v

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Altitude

time (sec)

h
e
i
g
h
t

m
e
t
e
r
s

Figure 7.2: Altitude h

Ordinary graphs (plots) are the simplest way to visualise evolution of the system.
Velocity and altitude in Figures 7.1 and 7.2 (from the example in Section 2.2.1), respec-
tively, exemplify the use of graphs to depict evolution of system.

7.5.2 Event traces and message sequence charts

LampController

-status

� off

-switch_on

-switch_off

Figure 7.3: Example of Lamp and
Controller simulation

Usually, simulations of discrete systems in computer science are presented by event
traces, i.e., ordered sequences of events identifiers or event-state traces, i.e., ordered
alternating sequences of events and states identifiers (or state valuations). If in the

119

i
i

i
i

i
i

i
i

7. S  B H P C

discrete version of the example from Section 2.2.1 bouncing is denoted by bounce,
then

• An example of an event trace is 〈bounce,bounce,bounce, . . .〉;

• An example of an event-state trace is

(h = 10, v = 0),bounce, (h = 0, v = −14.1),bounce, (h = 0, v = −12.8), . . .

Traces can be decorated with some additional information, if it is defined so in the
formalism.

Remark 7.5.1 (Event traces and event-state traces). Often the notion of event traces is
used to refer to event-state traces, because in some formalisms events are sufficient to
uniquely determine states. �

A more informative visualisation technique for discrete systems simulation is message
sequence charts (MSC) [Rudolph et al., 1996, ITU-T, 2000]. In message sequence charts
processes are represented by vertical lines, and horizontal lines (vectors) connecting
the processes represent communication amongst them.

Example 7.5.2. Let us have a system consisting of a lamp and a controller that can
request a state of the lamp (status), get an answer (on,off), and switch the lamp on
(switch_on) and off (switch_off). An example of simulation of such system is presented
in Figure 7.3. The controller starts by requesting the state of the lamp, receives an
answer off, then switches it on and off.

Notice that in the example only message sequence charts like notation is used,
because concrete design may depend on the formalism that employs it. �

Remark 7.5.3 (MSC). A formal definition of the message sequence charts (MSC) is
available in Rudolph et al. [1996], ITU-T [2000]. However, we just propose to adopt a
similar notation style to visualise the discrete behaviour (according to the formalism,
as in U (Section 7.9)). �

7.5.3 Combined view

Graphs and event traces or message sequence charts adequately represent continuous-
time and discrete behaviour, respectively. However, hybrid systems combine both
types of behaviour, therefore some combination of several representations is needed.

Usually only graphs are used to visualise continuous behaviour, and discrete events
are visible as a change of behaviour. Results in BHPC can be visualised in an ordinary
way, employing graphs and MSC. However, these techniques are not always sufficient
to visualise hybrid phenomena.

We propose to use MSCplots or MSP (message sequence plots) [Schonenberg, 2006].
Message sequence plots is a combination of MSC [Rudolph et al., 1996, ITU-T, 2000] and
plots that captures both discrete and continuous-time behaviour, and their interaction.
MSP has two main compounds: message-sequence charts rotated 90◦ combined with
plots. We do not provide a formal definition of message sequence plots, because we
do not want to introduce a new formalism, but rather to propose an abstract technique
for visualisation of hybrid behaviour. Therefore, we just illustrate MSP in Figure 7.4.

120

i
i

i
i

i
i

i
i

7.5. V  

Processi

Processj

qual1

qual2

qual3

v

qual1

qual2

qual4

v

v

act1 act2 act3
act3

Figure 7.4: Visualisation of hybrid simulation

• Horizontal lines connected to the corresponding boxes with process identifiers
represent processes and time-line (or life-line in MSC terminology). Time is as-
sumed to flow to the right along each time-line at the same speed.

Figure 7.4 consists of Processi and Processj that are represented by horizontal
lines connected to boxes with processes identifiers.

• Labelled vertical lines going across time-lines represent communication, i.e.,
action prefixes in BHPC case. Notice that we use simple lines instead of arrows,
because communication in BHPC is not directed.

In Figure 7.4 communication between Processi and Processj consists of actions
act1,act2 and act3.

Continuous-time evolution is depicted by plots over time-lines. A legend is used
to depict relation between plots and qualifiers. Qualifiers that interest user can be
selected. If several processes evolve concurrently, the synchronising qualifiers appear
for both processes.

In Figure 7.4 qualifiers qual1, qual2, qual3 and qual4 are depicted. Processi is related
with qualifiers qual1, qual2 and qual3, and only qualifier qual1 is selected to be visible.
Processj is related with qualifiers qual1, qual2 and qual4, and qualifiers qual2 and qual4 are
selected to be visible. At some moment actions act1,act2 and act3 interrupt continuous
evolution. After communication continuous-time evolution goes on.

Folding and unfolding can be introduced to control visibility of components of
parallel composition. In such a case communication between these processes should
be depicted in some other way, e.g., as lines with action names that perpendicularly
cross the process line.

121

i
i

i
i

i
i

i
i

7. S  B H P C

Thermostat

Control

l□v

on

l□v
20

19

21

20

19

21

1 2 3 4 5

1 2 3 4 5

[l| dl/dt=-Kl|
tempOn>= l
>=tempMin]

[l| dl/dt=K(h-l)|
tempOff <= l <=tempMax]

[l| dl/dt=-Kl|
tempOn>= l >=tempMin]

[l| any(l) |
l = tmpOn]

[l| any(l) | l = tmpOff] [l| any(l) | l = tmpOn]

onoff

Figure 7.5: Upgraded Thermostat evolution in MSP

Moreover, a figure can be decorated with process expression, e.g., action- and
trajectory prefixes at the corresponding parts of communication lines and graphs,
respectively.

Recursive calls can be depicted as boxes with a new process identifier on the
time-line.

We exemplify a potential use of such technique using an upgraded thermostat
from Example 5.8.2. In an ordinary way the evolution of system would be depicted
as in Figure D.4. While in Figure 7.5 we give an example of evolution depicted using
MSP. It is easy to see that all information that is available in an ordinary plot (a plot of
temperature changes) is available in MSP. Furthermore, in the message sequence plot
both processes and communication between them are visualised. Therefore, causes
of changes are visible too. Correspondingly, all information that is visible in message
sequence charts is visible in MSP. Moreover, it is a lot easier to observe causes of
communication, and vice versa.

The same evolution with explicit recursive calls is depicted in Figure 7.6. By
comparing Figures D.4, 7.5 and 7.6 it is clear that the developer and user will have
to choose between the amount of represented information and clarity. Therefore, the
user should be allowed to choose what he wants to see, and be able to hide (fold) or
expose (unfold) parts of MSP.

The proposed technique can be easily adopted to other hybrid systems modelling
frameworks with minimal changes, e.g., to depict a directed communication arrows
can be used.

122

i
i

i
i

i
i

i
i

7.5. V  

Thermostat

Control

lv

on

lv
20

19

21

20

19

21

1 2 3 4 5

[l| dl/dt=-Kl|
tempOn>= l
>=tempMin]

[l| dl/dt=K(h-l)|
tempOff <= l <=tempMax]

[l| dl/dt=-Kl|
tempOn>= l >=tempMin]

[l| any(l) |
l = tmpOn]

[l| any(l) | l = tmpOff] [l| any(l) | l = tmpOn]

onoff

ThOff ThOn ThOff

Control

1 2 3 4 5

Figure 7.6: Upgraded Thermostat evolution in MSP with recursion

Other techniques to visualise hybrid simulation output In some tools discrete
changes are indicated by vertical lines or thicker dots (stars, squares, etc.) at the
switching moment (e.g., in Fabian [1999], Lee and Zheng [2005]). Such an approach
has a critical drawback, i.e., if a switching structure is complex and the system switches
several times at the same time point, then only the values are visible in the graph and
the switching order is not.

Hedlund [1999, p.74] uses “additional dimension” in the three-dimensional plots
to display switching planes/points.

Levine [2003] visualises the growth of explored branches. Such an approach may
be useful to display results of several simulation runs.

One more solution is to use two-dimensional plots (planes) to represent continuous-
time evolution phases and insets of directed graphs (or just vectors representing ac-
tions) between them. Such visualisation methods are regularly used in the literature to
illustrate the nature of hybrid phenomenon. It can be one plot, like in Andersson [1994,
p.106] or several plots [Mosterman and Biswas, 2002, p.5], [Branicky and Mattsson,
1997].

7.5.4 Visualisation of components

In some cases it is preferable to visualise a system components as physical objects. It
may uncover some properties of a system that are indiscernible in mathematical rep-
resentation (graphs, equations). Moreover, it helps to present dynamical behaviour of
system to an audience not familiar with graphs or other types of charts. Packages, like
Dymola (Section 18) and S (Section 7.9) provide means for visual modelling.

123

i
i

i
i

i
i

i
i

7. S  B H P C

Samarin [2002] proposes a visual approach for modelling and simulation of physi-
cal systems6.

3D visualisation The most impressive manner of visualising simulations is a 3D
(three-dimensional) visualisation, especially when an object is placed into the realistic
environment. Mueller-Wittig et al. [2002] exemplifies such an approach. Levine [2003]
uses it for visualisation of path-finding. Tools, like Dymola (Section 18) and S
(Section 7.9) provide means for 3D visualisation.

Different, but very impressive examples of 3D visualisation are available on TV
(e.g., Discovery) every day.

7.6 Simulation of Zeno behaviour

There is a number of problems in the hybrid systems area. The Zeno phenomenon is one
of them. It manifests itself when the system tries to take an infinite number of discrete
transitions in a finite amount of time. An example of Zeno behaviour is distinctly
visible in Figures 2.2 and 2.3 (Section 2.2.1), when the steps are getting repeatedly
smaller. Such behaviour forces the simulator to make continually smaller steps and
at some moment, if the formalism and/or tool are not Zeno-proof, it yields imprecise
results caused by numerical computation problems. The Zeno phenomenon is studied
only to a small extent, however, some interesting results are reported in Johansson et al.
[1999].

Efficient techniques to deal with Zeno behaviour are still to be designed. As a pre-
caution, a tool can try to detect situations when the step-size is repeatedly decreasing
and inform user about it.

In B prototype we do not use any technique to detect Zeno behaviour. How-
ever, usually in definitions of trajectory prefixes conditions are used to restrict allowed
evolutions. Consequently, numerical errors leading to the restricted values are de-
tected, and instead of producing misleading simulation results, simulation process is
halted. Moreover, simulations of the bouncing ball (Example 5.8.1) and the two tanks
(Example 5.8.4) with B prototype show that the prototype progresses in a very
small steps and stabilises on certain values. While in naïve experiments with some
tools simulation continues in the restricted state space due numerical errors.

We anticipate, that in the future, the techniques based on states sequence analysis
can be designed to detect situations when the same process expression in succeeding
states is observed, and the steps (time intervals) between these states are decreasing.

7.7 Architecture

There is a plentitude of simulation tools (Section 7.9) for numerous hybrid systems
modelling and analysis frameworks. Different architectures are embraced depending
on the origins, purpose of the tool, the hybrid formalisms it supports.

In Figure 7.7 we separate the generic components of a hybrid systems simula-
tor. Such an architecture is suitable for a BHPC simulation tool. In B toolset

6A demo is available at http://www-sop.inria.fr/mimosa/rp/SimulationInPhysics/index.html.

124

http://www-sop.inria.fr/mimosa/rp/SimulationInPhysics/index.html

i
i

i
i

i
i

i
i

7.7. A

Specification

Compiler/
Translator

Specification in
internal format

Translator to
other formalism

Compiler/
translator to
executable

Executable
specification

Specification in
other language

Editor
Text editor Visual editor

Simulation
control
centre

Other
simulation
platform

Library of
executable

routines

DAE/
ODE

solvers
Optimization

Simulation
results

Visualisation
unit

Visualised
simulation results

Library

Experiment
descriptionSimulation

results
analysis

tools

Figure 7.7: General architecture of simulation package

(Appendix D) we implemented only a part of the presented architecture to evaluate
adequacy of the proposed simulation algorithms and architecture. These parts are
singled out by the dashed border lines.

Editor: provides facilities for editing specifications. If ASCII7 based language is used,
an ordinary text editor is sufficient for the task. However, features as syntax
highlighting, context sensitive help, code folding/unfolding are very handy too.
An integrated development environment is an even a more effective solution, if
it provides the above mentioned facilities, and has features like special symbol
support, etc. Moreover, visual editors are required for visual formalisms, and
most of the time they are specific to the formalism. Nevertheless block diagrams
and object diagrams editors are general enough to be used with different tool-
sets.

BHPCC [van Putten, 2006] provides text editor and some visual editor function-
ality. An ordinary text editor can be used to edit specifications in BHPC ASCII

7See http://en.wikipedia.org/wiki/ASCII.

125

http://en.wikipedia.org/wiki/ASCII

i
i

i
i

i
i

i
i

7. S  B H P C

language [van Putten, 2006, Bhave prot] as well.

Compiler/Translator: transforms a specification to an internal format. Detailed design
of the component is subject to the chosen formalism and chosen simulation
technique.

In B toolset this functionality is provided by BHPCC. It translates a speci-
fication in BHPC ASCII language to an internal XML based format [van Putten,
2006, Bhave prot].

Library: is usually used to store a collection of code snippets, predefined elements.

Compiler/Translator to executable: transforms a specification from the internal for-
mat to the executable format. In some cases it is done in one step, e.g, if the
internal representation is used directly by the simulation engine.

Simulation control centre: is a simulation engine. It manages simulation process,
provides facilities for interactive simulation control, determines how to pro-
ceed, glues together all simulation systems components: ODE/DAE solvers,
executable routines libraries, other simulation tools. Moreover, it generates sim-
ulation results in requested form.

Several components of B toolset provide such functionality. B proto-
type is a tool for a hybrid simulation of BHPC specification provided in the
internal format (Appendix D). Besides, D B can be used for discrete
simulation [Krilavičius and Schonenberg, 2005, Schonenberg, 2006].

Translator to other formalism: translates the specification from the internal represen-
tation form to other formalisms (to be analysed using another tool).

BHPC2Mod component (provided as a part of BHPCC) translates sequential
BHPC specification to ModelicaTM [van Putten, 2006] that can be simulated using,
e.g., Dymola (Section 18).

Experiment description: unit provides facilities for complex experiments planning.
In particular, an elaborate experiment planning unit is profitable, if the batch
simulation mode (Section 7.8) is used regularly.

Library of executable routines: contains pre-compiled code snippets, etc.

Optimisation: component provides simulation optimisation facilities.

ODE/DAE solvers simulate (solve) ODE/DAE.

In B prototype M is used to solve ODE (Appendix D).

Other simulation platform: can be used for co-simulation.

ModelicaTM language (in particular, Dymola) can be used to simulate sequential
BHPC specifications translated by BHPC2Mod.

Visualisation unit: provides visualisation facilities for simulator.

Current version of B toolset does not include any visualisation tools. How-
ever, Microsoft (R) Excel 2003 XY(Scatter) routine of Chart Wizard was success-
fully used to generate simple plots.

126

i
i

i
i

i
i

i
i

7.7. A

Figure 7.8: Smile/M architecture

Simulation results analysis tools. Specialised tools and packages can be employed
for simulation results analysis.

Other architectures Different authors propose slightly different views on the archi-
tectures or the architectures itself, but the essence remains the same.

• In Ernst et al. [1997] the Smile/M architecture is described, see Figure 7.8. Smile/M
is the Smile-ModelicaTM simulation environment. The architecture resembles our
version augmented with an interaction between the Smile system and ModelicaTM.
Furthermore, more attention is concentrated on the experiment planning and
interaction between ModelicaTM and Smile.

• Broenink and Weustink [1996] give an orthogonal view of the simulation process.
The process is divided into three constituents.

1. The simulation model is the object structure of the model to be simulated. It
corresponds to the executable specification (or the specification in internal

127

i
i

i
i

i
i

i
i

7. S  B H P C

Source

code

Compiler

Continuous

language

elements

Intermediate

code (C++)

C++

Compiler

Extended

engine

Numerical

solvers

Executable

program

Figure 7.9: Hybrid chi simulator

format) in our architecture. Therefore, the model to simulate or its internal
representation is thought about more as a part of the system, not just the
data.

2. The simulation experiment provides additional simulation information. It
corresponds to the experiment description and simulation control centre
interface in our architecture.

3. The simulation program provides a simulation kernel and its relation with
the model and experiment. It directly corresponds to the simulation control
centre in our architecture.

• Hofkamp [2001] discusses the steps of transforming the Hybrid χ (Section 7.9)
specification to the executable code. A resembling simulator structure is pre-
sented in Fabian [1999, p.85], see Figure 7.9. The hybrid χ architecture imple-
ments only a part of our architecture. That is, the χ Compiler corresponds to
the coupled compiler to internal code and compiler to executable. Then the C++
compiler transforms it to executable with added simulation control centre (or
extended χ engine in the hybrid chi terminology) and numerical solvers. Such
an approach allows to gain a better performance, but may put certain restrictions
on the flexibility of the control centre. Furthermore, it would increase complexity
of software and dependency on supplementary software, e.g., C++ compiler.

7.8 Simulation modes

There are several different ways to engage in simulation. In some cases it is convenient
to scrutinise every step of simulation before choosing the next step, i.e., to run sim-
ulation stepwise. Running simulation for while and only then analysing the results
is appropriate choice for some problems. In some cases it is handy to define a set of
experiments, and then run it as a batch. These techniques are called simulation modes.

Interactive simulation is a kind of simulation that includes an active human partici-
pation, i.e., at the certain moments of simulation an operator should interactively
choose how to proceed. Interactive simulation is usually employed while de-
bugging specification, or analysing a small part of it.

128

i
i

i
i

i
i

i
i

7.9. T 

Automatic simulation is a kind of simulation that does not require human interaction.
Mostly it is used for long simulation runs. However, it can be combined with the
interactive simulation, i.e., an human operator can stop the process at a certain
moment, adjust the settings/values and then let it proceed.

Batch simulation is a generalised version of automatic simulation. Series of simula-
tion runs are specified and executed, mostly without any human intervention. It
can be a simple list of simulation runs with different parameters, or some batch
language can be employed to define the order and types of experiments based
on the simulation results. Usually batch simulation is used to perform long and
complex experiments. A special tools can be used to analyse the results of such
experiments.

The ultimate goal for BHPC simulation is to provide all above mentioned simula-
tion modes. However, in the proof-of-concept version of tool the interactive mode have
been implemented first. The automatic and batch simulation régimes can be added
later.

7.9 Tools overview

There are many different tools and languages for modelling, simulation and analysis
of hybrid systems. An exhaustive overview of tools and languages is given in Carloni
et al. [2004].

Here we provide concise descriptions of some of the most popular tools. Moreover,
we compare their features in Table 7.1 and attempt to establish the B toolset and
B prototype whereabouts in the listed tools context.

The table requires some explanations.

• By partial semantics we mean that only a part of behaviour is defined in a formal
way.

• We distinguish three classes of maturity. We use notion industrial to denote
tools that are widely used in industry, have good support and documentation,
are stable and reliable. Academic tools define a wide range of tools that are
usually developed in research institutions, and require more expertise from
users. However, some of the tools in this class are almost industrial strength,
and some just in a bit better state that prototypes. By prototypes we mean tools
that were developed to illustrate and evaluate theoretical results. Usually such
tools are unstable, unreliable and lack functionality.

20-sim 20-sim is a bond graphs (Section 3.3.12) based industrial level tool for mod-
elling and simulation of dynamical systems. It fully supports graphical modelling and
allows to design and analyse dynamical systems in an intuitive and user friendly way.
Web page: http://www.20sim.com/.

AnyLogic AnyLogic [Borshchev et al., 2000] is a virtual prototyping environment,
based on UML-RT, Java and algebraic-differential equations. The tool is used to model

129

http://www.20sim.com/

i
i

i
i

i
i

i
i

7. S  B H P C

Tool Formal
semantics

Formalism Maturity Features

20-Sim yes bond graphs industrial modelling,
simulation

AnyLogic no UML-RT and DAE industrial modelling,
simulation

C yes C academic modelling,
simulation

CheckMate yes threshold event
driven hybrid
systems

academic modelling,
verification

d/dt yes hybrid automata prototype verification
Hybrid χ yes Hybrid chi calculus academic modelling,

simulation
HYSDEL partial PWA, MLD academic modelling,

simulation ,
controller
generation

HyTech yes hybrid automata academic modelling,
verification

HyVisual yes HyVisual academic visual modelling,
simulation

Dymola partial ModelicaTM industrial modelling,
simulation

S no S industrial modelling,
simulation, analysis

S yes dynamic networks
of hybrid automata

academic modelling,
simulation

S /
S

partial finite state machines,
flow diagrams,
statecharts

industrial modelling,
simulation, analysis

U yes networks of timed
automata

academic modelling,
verification

B toolset yes Behavioural Hybrid
Process Calculus

prototype modelling,
simulation

Table 7.1: Hybrid systems modelling and analysis tools

the broad spectrum of systems, but the simulation and modelling results should be
evaluated taking in consideration that the underlying semantics of the tool are not
formal. Web page: http://www.xjtek.com.

Charon The C toolkit is based on the C language (Section 3.3.11). The
toolkit is written in Java. It has a graphical user interface, a visual input language
similar to S (Section 7.9), a type checker and a simulator. For visualisation
of output a Ptolemy (Section 7.9) plotter is used. Web page: http://www.cis.upenn.
edu/mobies/charon.

130

http://www.xjtek.com
http://www.cis.upenn.edu/mobies/charon
http://www.cis.upenn.edu/mobies/charon

i
i

i
i

i
i

i
i

7.9. T 

CheckMate CM [Krogh and Chutinan, 1999, Silva et al., 2000] is a hybrid
systems verification toolbox for S (Section 7.9). It is based on the threshold
event driven hybrid systems (TEDHS) [Krogh and Chutinan, 1999, Silva et al., 2000].
Discrete changes in TEDHS are generated only by hitting specified thresholds that are
defined by hyperplanes. Non-linear continuous dynamics are supported. The tool is
constructed using S GUI and user defined M m-files. Web page: http:
//www.ece.cmu.edu/~webk/checkmate.

d/dt d/dt [Asarin et al., 2001] is a tool for reachability analysis of continuous and
hybrid systems with linear differential inclusions. The tool accepts as an input a
hybrid automaton (Section 3.3.6) with linear continuous dynamics, potentially with
an uncertain, bounded input of the form dx

dt = Ax+u where u is an input taking values in
a bounded convex polyhedron U and the invariants and transition guards are defined
by convex polyhedra. Web page http://www-verimag.imag.fr/~tdang/ddt.html.

Hybrid χ The Hybrid χ (Section 5) simulator is described in Fabian [1999], van Beek
and Rooda [2000]. It has been successfully applied to a number of case studies. Web
page (Chi compiler): http://chi-compiler.gforge.se.wtb.tue.nl.

HYSDEL HYSDEL [Torrisi et al., 2002, Potočnik et al., 2003] is a control-oriented
language for describing hybrid systems. Systems are modelled as discrete hybrid au-
tomata (DHA) [Bemporad, 2003] or mixed logical dynamical systems (Section 3.3.3)
and transformed to the corresponding piecewise-affine systems (Section 3.3.2). HYS-
DEL is limited to affine hybrid systems and discrete dynamics. It can be used together
with Multi-Parametric Toolbox (MPT) [Kvasnica et al., 2004], which is a free M
toolbox for design, analysis and deployment of optimal controllers for PWA systems.
Web page: http://www.tik.ee.ethz.ch/~samarjit/HYSDEL.html.

HyTech HyTech is an automatic tool for the analysis of embedded systems. HyTech
computes the condition under which a linear hybrid system satisfies a temporal
requirement. Hybrid systems are specified as collections of hybrid automata (Sec-
tion 3.3.6) with discrete and continuous components, and temporal requirements are
verified by symbolic model checking. If verification fails, then HyTech generates a
diagnostic error trace. The standard reference to the HyTech algorithm is Alur et al.
[1996a], and the standard reference to the HyTech tool is Henzinger et al. [1997]. Web
page: http://www-cad.eecs.berkeley.edu/~tah/HyTech.

HyVisual and Ptolemy HV [Lee and Zheng, 2005, Brooks et al., 2004] is a
visual modeller and simulator for continuous-time dynamical and hybrid systems. It
is a part of the Ptolemy project8 and is based on Ptolemy II [Lee, 2004]. Ptolemy II is a
toolkit written in Java for modelling and design of heterogeneous, concurrent systems.

HV provides means for modelling and simulation of continuous-time dy-
namical and hybrid systems. The models are built using block diagrams based

8See http://ptolemy.eecs.berkeley.edu/.

131

http://www.ece.cmu.edu/~webk/checkmate
http://www.ece.cmu.edu/~webk/checkmate
http://www-verimag.imag.fr/~tdang/ddt.html
http://chi-compiler.gforge.se.wtb.tue.nl
http://www.tik.ee.ethz.ch/~samarjit/HYSDEL.html
http://www-cad.eecs.berkeley.edu/~tah/HyTech
http://ptolemy.eecs.berkeley.edu/

i
i

i
i

i
i

i
i

7. S  B H P C

language. Semantics for the language are given in Lee and Zheng [2005]. HV-
 web page: http://ptolemy.eecs.berkeley.edu/hyvisual. Ptolemy II web
page: http://ptolemy.eecs.berkeley.edu/ptolemyII.

ModelicaTM ModelicaTM (Section 3.3.13) is a language for hierarchical physical mod-
elling. It is an object-oriented language for modelling physical systems for the
purpose of simulation. ModelicaTM is non-causal and multi-domain, with a fast
growing collection of libraries. It is used in several commercial tools, like Dymola
(http://www.Dynasim.se) and MathModelica (http://www.mathcore.com), and in
an open source tool Open Modelica [Fritzson et al., 2002]9. For more information
about ModelicaTM developments see http://www.modelica.org.

Scicos S [Nikoukhah and Steer, 1997] is a S10 based package for the mod-
elling and simulation of dynamical systems. S can be considered as a free version
of M and S as a S. Web page: http://www.scicos.org.

Shift S [Deshpande et al., 1997] is a language for modelling and analysis of
dynamic networks of hybrid automata. Hybrid systems in S have a dynamically
changing structure. Components of the hybrid system can be created, interconnected
and destroyed as the system evolves. For more information and developments of
S and successor λ-S see http://www.path.berkeley.edu/shift and http:
//www.gigascale.org/shift.

Stateflow and Simulink S/S [Hamon and Rushby, 2004, Stateflow]
pair is a toolset for the modelling and design of dynamical systems. It is based on
the combination of Statecharts [Harel, 1987], finite state machines and flow diagrams.
The tool is a commercial product of Mathworks. Together with M it is a de
facto standard tool for academia and industry dealing with continuous and discrete
dynamics. Web page: http://www.mathworks.com/products/stateflow.

U U [Behrmann et al., 2004] is an integrated tool environment for mod-
elling, validation and verification of real-time systems based on networks of timed
automata[Alur and Dill, 1992], extended with data types. It is restricted to very simple
dynamics, namely clocks. Web page: http://www.uppaal.com.

B prototype in the context of hybrid systems modelling and analysis tools
The B toolset (Appendix D) is a collection of software for modelling and anal-
ysis of hybrid systems specified using Behavioural Hybrid Process Calculus. The
B prototype (Appendix D) is a proof-of-concept tool for simulation of a subset of
Behavioural Hybrid Process Calculus.

B prototype is rather an immature tool in contrast to industrial strength tools
as Dymola, S/S or 20-sim. However, it is easy to see from Table 7.1
that it falls into a category of tools that have formal semantics and can be used for

9For more information see http://www.ida.liu.se/labs/pelab/modelica/t.php3?page=open.php3.
10See http://scilabsoft.inria.fr.

132

http://ptolemy.eecs.berkeley.edu/hyvisual
http://ptolemy.eecs.berkeley.edu/ptolemyII
http://www.Dynasim.se
http://www.mathcore.com
http://www.modelica.org
http://www.scicos.org
http://www.path.berkeley.edu/shift
http://www.gigascale.org/shift
http://www.gigascale.org/shift
http://www.mathworks.com/products/stateflow
http://www.uppaal.com
http://www.ida.liu.se/labs/pelab/modelica/t.php3?page=open.php3
http://scilabsoft.inria.fr

i
i

i
i

i
i

i
i

7.10. C

modelling and simulation of hybrid systems. We would like to note that most of
industrial strength tools are not based on formalisms with formal semantics in contrast
to the tools from academia. But the increasing maturity and number of tools with
formal semantics shows a growing interest in this type of tools. We find such a
tendency encouraging for the B toolset, because it is based on a sound hybrid
formalism. Moreover, the experiments with small examples (Appendix D) show that
even a prototype can be used to simulate systems with comparatively complicated
behaviour, e.g., Zeno phenomena.

It is hard to estimate the exact position of the B toolset in such a wide context,
because a prototype implementation does not reveal the full power of BHPC (see
Chapter 6 for comparison of BHPC with diverse formalisms).

7.10 Conclusions

In this chapter we presented a technique for simulation of Behavioural Hybrid Process
Calculus. Simulation procedures for all main BHPC operators or their generalised
versions were defined. The only exceptions are hiding and renaming of trajectory
qualifiers. However, for renaming a preprocessor directives (macro commands) like
approach can be used.

Besides, the major problems occuring in simulation of hybrid systems were sur-
veyed and potential solutions discussed. Occurrence of the presented problems in
BHPC was examined and solutions or directions for future investigation sketched.

We presented an abstract Behavioural Hybrid Process Calculus simulation tech-
nique that provides conceptual solutions. Technical details and implementation de-
pendent design decisions were left out, because it can be done variously in different de-
velopment environments. Moreover, we anticipate that even such abstract technique
will have to be adapted to a particular implementation following requirements of the
modern software engineering and hardware limitations. To facilitate such changes
the simulation algorithm was partitioned into small procedures. Consequently, only
small parts may have to be adapted.

For some problems future research directions rather than solutions were proposed.
For example, it is not completely clear how to deal with or even always detect Zeno
behaviour. Efficiency of techniques for non-deterministic choice in a dense interval
can be improved as well as the adequateness of making a nondeterministic choice.

We did not propose any technique for the general renaming (and hiding) of trajec-
tory qualifiers. However we believe that it can be done. The problem is essentially
related to representation of processes and qualifiers. To support renaming of quali-
fiers it is necessary to design data structures that allow separate internal and external
representations of qualifiers w.r.t. renaming. Moreover, a technique to dynamically
map these qualifiers is necessary.

Only the simplified version of continuous-time simulation algorithm was evalu-
ated. We anticipate the presented algorithm may have to be adapted for a concrete
implementation. Moreover, some restrictions can be imposed by the chosen ODE/DAE
solvers and other symbolic manipulation tools that, e.g., are used to handle conditions
and exit conditions in trajectory prefixes, guards.

The proposed simulation algorithms do not include techniques that deal with

133

i
i

i
i

i
i

i
i

7. S  B H P C

numerical and real numbers representation in computer errors. However such issues
are important in complex real-life systems simulation. Robust simulation techniques
that can deal with such problems are necessary for industrial complexity tools.

We believe that the proposed techniques can be successfully applied to the sim-
ulation of Behavioural Hybrid Process Calculus, and are a good starting point to
development of more robust and applicable techniques. As a proof of it, certain parts
of the theory proposed in this chapter were applied in B toolset and especially in
B prototype (Appendix D) and in Krilavičius and Schonenberg [2005], Schonen-
berg [2006] and van Putten [2006].

134

i
i

i
i

i
i

i
i

On one occasion a man went off to work and on the
way he met another man who, having bought a loaf
of Polish bread, was going his way home.
And that’s just about all there is to it.

Daniil Kharms

8
Concluding remarks

In this chapter we summarise and evaluate the results that were presented in the
dissertation. Individual conclusions are available in the last sections of each chapter.
In addition, we present several directions and ideas for future research.

8.1 Hybrid systems

In Chapter 1 we introduced embedded systems and linked them with hybrid systems. Ex-
amples of omnipresence of hybrid systems were provided as a motivation for research.
Moreover, we surveyed major topics in the area of hybrid systems (Section 1.2). Two
best studied topics of hybrid systems are modelling and analysis of hybrid systems.
However, it does not mean that all modelling and analysis problems are already solved.
On the contrary, it is just getting mature, terminology is getting unified, and problems
more defined, but not really solved. Moreover, we surveyed two emerging research
topics: deployment and especially testing of hybrid systems. Of course, these areas
already exist for quite a while, but only now they are becoming an object of thorough
and systematic investigation1.

8.2 Modelling of hybrid systems

In Chapter 2 we exemplified hybrid systems by a set of examples. The examples were
selected to represent diverse properties of hybrid systems, its variety and occurrence
in different applications. Moreover, we think that a good collection of examples can
be used to compare and evaluate different formalisms, or rather the suitability of these

1Control generation for continuous systems is old and mature subject, but it’s recent extensions to hybrid
systems accommodate only small classes of such systems.

135

i
i

i
i

i
i

i
i

8. C 

techniques for modelling (and analysis). Such a collection of examples differs from
benchmarks, because benchmarks are more fitted to tools comparison. Consequently,
such a list of examples would help to identify some characteristics of formalisms in the
early stages of development. We believe that the examples provided in Chapter 2 to-
gether with the examples from van der Schaft and Schumacher [1998] and De Schutter
and Heemels [2004] can be a good starting point for such a collection.

The survey (Chapter 3) of major formalisms for modelling and analysis of hybrid
systems and their classification provides a substantial amount of information about
principal characteristics of hybrid phenomena. Moreover, as we had anticipated, the
analysis shows that hybrid formalism usually retains most of the originating theory
characteristics (control theory or computer science) and includes a bigger or smaller
selection of features from the complementing theory. In some cases these additional
features are hardly noticeable, and sometimes such an amalgamation is not so far
from the nice equilibrium between the two world views. However, we did not find
a formalism that had both satisfactory integration of concepts from control theory
and computer science, fundamental treatment of discrete and continuous behaviours,
and well founded definition of compositionality. All these properties are important
for an adequate treatment of hybrid systems. Of course, it does not mean that some
approaches are worse than others, usually they just reflect different intuitions and
goals, and emphasise different characteristics that may be more beneficial in some
cases (e.g., mobility).

One of our goals was to unify these three trends and propose a formalism that has
a good theoretical foundation, sound definition of compositionality, and is applicable
in practice. We think, that a good theoretical foundation and sound definition of
compositionality were achieved by defining Behaviuoral Hybrid Process Calculus
(BHPC). Moreover, we tackled issue of practical applicability by defining theory for
simulation of BHPC and validating it in prototype tools. However, further work is
needed to adapt the formalism to industry needs.

An attempt to merge computer science and control theory in hybrid systems re-
search was taken in Chapter 5. BHPC is based on two fundamental notions of actions
and trajectories that describe discrete and continuous evolution of dynamical systems,
respectively. At the higher abstraction level these two types of behaviour are treated
uniformly, i.e., as normal elements of process algebra. Their behaviour is defined using
structural operational semantics (SOS) rules [Plotkin, 1981, 2003]. The rules respect the
differences between trajectory prefixes and action prefixes, based on our intuition how
such processes should behave. For example, in parallel composition trajectory prefixes
are always required to synchronise, while for action prefixes interleaving semantics is
adopted. A formal definition of concurrently evolving components allows to reason
about them in a compositional manner, i.e., to derive behaviour of the resulting system
from the behaviours of the components.

We defined a hybrid strong bisimulation relation for BHPC and proved that it
is a congruence. It is one of the most important properties to attain well defined
compositionality. Such a property allows to interchange bisimilar processes in any
process algebraic expression. In other words, it allows to refine process, change their
internal representation, and interchange them without any losses as long as they
manifest the same behaviour.

Strong bisimulation (Section 5.4.1) treats silent actions in the same way as usual

136

i
i

i
i

i
i

i
i

8.3. A   

actions. However, often it is interesting to analyse systems w.r.t. weaker equivalences.
Weak bisimulation [Milner, 1989] is one of the most popular of such equivalences. Her-
manns [1998] gives a nice introduction on bisimulation of stochastic models. Bisim-
ulations for hybrid stochastic systems are analysed in Strubbe [2005]. Therefore, we
believe that defining a hybrid weak bisimulation or other weaker equivalences for
BHPC and analysing its properties may be worthy research topic. However, it is not a
trivial topic. For example, it is not completely clear, how to treat hiding of trajectories
or trajectory qualifiers. Therefore, developing a theory of weak bisimulation would
take a lot more efforts than a hybrid strong bisimulation for BHPC.

We discussed an experimental version of calculus (Section 5.9). It has some very
nice properties, as very intuitive version of choice, i.e., superposition that can be seen
as a generalisation of ordinary choice, and a different version of trajectory prefix. It is
still an experimental version, but we believe that further work on it could yield very
interesting results.

In Chapter 6 we compared BHPC with formalisms presented in Chapter 3. Hy-
brid systems characteristics, extracted in Chapter 3 were used as guidelines for the
systematic comparison.

8.3 Analysis of hybrid systems

In Chapter 4 we proposed a technique for stability estimation for a certain class of hy-
brid automata. In addition, this chapter demonstrates advantages of interdisciplinary
research as well. It combines the ideas from computer science and control theory
and based on cycles detection and conservative gains estimation. We borrowed the
well-known algorithm for transforming finite automaton into an equivalent regular
expression for cycles detection from computer science. From control theory we picked-
up the idea of conservative gains and used them to estimate stability of cycles.

Moreover, the result shows that at a higher abstraction level it is beneficial to treat
both, continuous and discrete behaviours uniformly. But when it is necessary, it should
be easy to go to the detailed level and apply actions specific to continuous or discrete
behaviour.

The current gains estimation technique is restricted to the two dimensional case.
This restriction was imposed by the used gains calculation techniques. The main
algorithm abstracts from these techniques. Therefore, potentially the results could be
generalised for higher dimensions.

Yet another important issue is the practical applicability of BHPC. In other words,
the question was (and is) to what extent it permits tools. We have chosen simulation,
because it is one of the de facto standards for the analysis of hybrid systems, widely
accepted in industry and academia. The results of this exercise were reported in the
last technical chapter (Chapter 7).

We devised a simulation algorithm for a subset of BHPC operators and tested
some of the proposed techniques in B prototype (Appendix D). The proposed
simulation algorithm defines one of the possible ways to simulate Behavioural Hybrid
Process Calculus. However, different software development techniques, program-
ming languages and hardware imposed limitations may require to change certain
parts of the algorithm or order of operations. Moreover, parts like the process transfor-

137

i
i

i
i

i
i

i
i

8. C 

mation to normal form (Section 7.2.4) can be changed to a first transition function [van
Eijk, 1988, Eertink, 1994, Schonenberg, 2006] without a loss of generality, because the
idea of the procedure is the same. Only a simplified version of continuous simulation
(Section 7.2.6) was validated in B and therefore, it will require further extensions.

Chapter 7 surveyed the major problems in simulation of hybrid systems in the light
of BHPC and in a more general layout. For some of the issues solutions were proposed,
and for the remaining ones the potential courses to tackle the problems were discussed.
One of such issues is detection and simulation of Zeno behaviour (Section 7.6). Un-
detected Zeno behaviour can cause significant decrease in performance and errors in
numerical simulation. We proposed a potential solution, that is, to analyse traces and
detect a situation, when the same process expression appears within decreasing time
intervals. Such analysis may help to detect some occurrences of Zeno behaviour, but
at the same time, it would decrease simulation speed, and that may be a problem in
real-time simulation.

Yet another interesting problem that is important in a wider context is an effec-
tive simulation of non-determinism. Section 7.3 discusses some of techniques and
approaches to this problem. Often, non-determinism is supposed to imitate a user.
Usually, only the interactive simulation and, in some cases, use of scheduler fulfill
such intentions. However, the use of a scheduler decreases performance, and an
interactive simulation often is not practical. Therefore, practical issues of different
approaches should be analysed.

An interesting continuation of BHPC simulation is an extension of the given algo-
rithm with simulation of hiding and renaming of qualifiers. It would provide more
flexibility to use process definitions as templates. However, renaming and hiding are
very powerful tools, and should be used with care. For example, hiding may influence
the outcome of parallel composition or choice.

Numerical errors and specifics of real numbers representation in computers is
one of the major problems in simulation of complex numerically intensive systems.
Simulation techniques that take into account these problems are of great interest. We
do not really solve this issue, but more formal and careful specification may be helpful
to detect an unexpected behaviour and identify its cause.

8.4 General remarks

Our aim was to better understand what constitutes the area of hybrid systems, analyse
existing formalisms while paying special attention to compositionality, and balance of
discrete and continuous behaviours representation. It resulted in stability analysis of
a certain class of hybrid automata and Behavioural Hybrid Process Calculus. Further-
more, we proposed a technique for simulation of BHPC. We believe that the proposed
calculus provides a good framework for compositional modelling of hybrid systems.

We would like conclude our work with several remarks of a more general nature.
Developments in formal methods research show that research of hybrid systems

testing is a very promising area. However it is interesting not only as a separate
activity, but as a part of complete life-cycle of mixed hardware and software systems.
Methodologies for better incorporation of formal techniques in the whole life-cycle are
unjustly neglected. Issues like formal specifications development techniques [Ruys,

138

i
i

i
i

i
i

i
i

8.4. G 

2001] and evolution of formal specifications require more attention than they are given
now. We believe that it can be interesting research area.

We think, that the mentioned problems and their theoretical solutions, as well as
problems discussed in introduction, should be investigated not only on paper, but also,
by building and applying tools (based on the developed theory) to sets of benchmarks
and practical problems. Such thorough validation of results could be very helpful in
gaining more insight on the research area and identifying other relevant issues. We
believe that at least partially our research conforms to these requirement, because we
not only proposed a technique to solve certain problems (compositional modelling of
hybrid systems), but validated it on prototype tool. However, as it is mentioned above,
it would be interesting to extend the tool, incorporate it to the systems development
life-cycle and experiment with it on the real life case studies. We believe that such an
investigation could provide a lot more insight how to improve BHPC, and what future
research directions are promising.

139

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

A
Stability

A.1 Proofs from Section 4.3

Theorem A.1.1. Let H be a hybrid automaton with stable locations. Then H is unstable, if it
has a non-contractive cycle.

Proof. Seeking a contradiction, assume that all cycles are contractive. Choose ε > 0
and let δk > 0 be such that limk→∞ δk = 0. Assume that for every k there exists a trace
σk = x1,ke1,k · · · eM−k−1,kxmk ,k, with

‖x1,k(0)‖ < δk ‖xmk ,k(tk)‖ > ε

Remove from each trace σk all cycles to obtain σ̃k. Denote by η̃k the event sequences
corresponding to σ̃k. Since the number of events is finite and since σ̃k does not contain
cycles, it follows that there exists an infinite number of σ̃ki s and an event sequence η̃
such that for all i:

η̃ki = η̃ = e1e2 · · · eM−1.

Hence every σ̃ki is of the form

σ̃ki = xki
1 e1xki

2 e2 · · · xki
M−1eM−1xki

M

with
xki

j :
[
τki, j, τ

′

ki, j

]
→ Rn

trajectories in location l j. If for some j τ′ki, j
< τki, j+1, then a cycle has been removed in

between. Since all cycles are contractive in the sense of Definition 4.3.2 we conclude
that

‖x(τki, j+1)‖ 6 ‖x(τ′ki, j
)‖. (A.1)

141

i
i

i
i

i
i

i
i

A. S

Notice that since ‖xmk,k(tk)‖ > ε and ‖xk(0)‖ < δk we also have that

‖xki
M(τ′ki,M

)‖ > ε ‖xki
1 (τki,1)‖ < δk. (A.2)

Now, choose δ̃M > 0 such that for any trajectory x in location lM we have

‖x(0)‖ < δ̃M ⇒ ‖x(t)‖ < ε.

Assume that δ̃ j has been defined. Choose δ̃ j−1 such that for every trajectory x in location
l j we have

‖x(0)‖ < δ̃ j−1 ⇒ ‖x(t)‖ < δ̃ j.

Take i such δki < δ̃1. It follows that

‖xki
1 (τ′ki,1

)‖ < δ̃2

from which we conclude
‖xki

2 (τ′ki,2
)‖ < δ̃3.

Repeating this argument we finally get:

‖xki
M(τ′ki,M

)‖ < ε.

This contradicts the first inequality in Equation (A.2) and therefore not all cycles of H
can be contractive. This concludes the proof. �

A.2 Optimising the Lyapunov function choice

Stability indication provided by gains depends on the chosen Lyapunov functions
in locations. These functions can fit trajectories better or worse. The better it fits
the trajectory, the less conservative is the gain. Because Lyapunov functions are not
unique, procedures to choose the better ones can be provided. We present a procedure
for linear dynamics given by a stable matrix and quadratic Lyapunov functions. The
need for optimisation and the difference between loose and tight level curves are easily
seen in Figure 4.8.

Some of the results were reported in Langerak et al. [2003a,b].
Let A ∈ Rn be a stable matrix. Let choose a non-zero x0 ∈ Rn and define the set of

level curves corresponding to quadratic Lyapunov functions

Ωx0 = {P ∈ R
n×n
| ATP + PA 6 0, xT

0 Px0 = 1}.

Ωx0 is a parametrisation of the level curves corresponding to quadratic Lyapunov
functions and level unity.

Lemma A.2.1. Let A ∈ Rn×n and let x0 ∈ R be a non-zero vector that does not belong to an
A-invariant subspace of dimension at most n − 1. Let U be an open neighbourhood of 0 ∈ R.
Then spant∈U(exp(At))x0 = Rn.

142

i
i

i
i

i
i

i
i

A.2. O  L  

Proof. Assume the contrary. Then for all t ∈ U there exists non-zero z ∈ R such that
zT exp(At)x0 = 0. Repeat differentiation and substituting t = 0 then yields zTAkx0 =
0 k > 0. DefineV = spank>0{A

kx0}. Obviously,V is an A-invariant subspace. Moreover
zT
V = 0 and therefore dimV 6 n − 1. This is a contradiction and the statement

follows. �

Lemma A.2.2. Let v1, v2, . . . , vn be a basis of Rn and let c ∈ R be a positive constant. Define
Ω = {P = TT > 0 | vT

i Pvi 6 c, i = 1, . . . ,n}. Then Ω is bounded.

Proof. It suffices to prove that there exits a constant M > 0 such that for all x ∈ Rn

with x =
∑n

i=1 λivi and
∑n

j=1 λ
2
j = 1 we have that xTPx 6 M that is the quadratic forms

xTPx are uniformly (w.r.t. Ω) bounded on the unit sphere. Choose any such x. Then

xTPx =

 n∑
i=1

λivi


T

P

 n∑
i=1

λivi


=

n∑
i=1

λ2
i vT

i Pvi +
∑
i, j

λiλ jvT
i Pv j

6 c
n∑

i=1

λ2
i +

1
2

∑
i, j

λiλ j

(
vT

i Pvi + vT
j Pv j

)
6 c + c

∑
i, j

λiλ j

6 c +
1
2

c
∑
i, j

(
λ2

i + λ
2
j

)
= c + c (n − 1) = cn

Where we used that for any two vectors v,w : vTPw + wTPv 6 vTPv + wTPw. �

Theorem A.2.3. Let A ∈ Rn×n be a stable matrix and let x0 ∈ R be a non-zero vector. Define
Ω = {P ∈ Rn×n

| ATP + PA 6 0, xT
0 Px0 = 1}.

• If x0 does not belong to a proper A-invariant subspace then Ω is compact.

• Every P ∈ Ω is positive semi-definite.

• Ω is convex.

Proof. Notice that since A is stable the setΩ is non-empty. Choose any P ∈ Ω. Due to
the condition on x0 the trajectory x(t) = exp(At)x0 spans Rn. Since x satisfies d

dt x = Ax
it follows that x(t)TPx(t) 6 xT

0 Px0 = 1 ∀t > 0. Choose time instants t1, t2, . . . , tn such that
span (x(t1), . . . , x(tn)) = Rn. It follow from Lemma A.2.2 (with c = 1) thatΩ is bounded.

To see that Ω is closed, choose a sequence Pk ∈ Ω such that limk→∞ Pk = P. Then

ATP + PA = lim
k→∞

ATPk + PkA =: −Qk.

By assumption Qk > 0 and therefore limk→∞Qk =: Q > 0. We conclude that P ∈ Ω.
This proves the first statement.

The second and the third parts are obvious. �

143

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

B
Proofs from Chapter 5

B.1 Proof of Theorem 5.5.4

In this appendix we present a proof of Theorem 5.5.4. We repeat the lemma here for
the readers convenience.

Theorem B.1.1 (Consistent signal flow). If the constraints stated in Definition 5.5.2 are
satisfied, then the signal flow is consistent, i.e., a semantic type is preserved. Then for all
B1,B2,B3, ϕ, ψ holds.

if B1
ϕ
−→ B2

ψ
−→ B3 then B1

ϕ;ψ
−−→ B3

Proof. By induction on the length of the derivation of B1
ϕ
−→ B2 and analysis of the

rules that apply to the syntactical format of the resulting B2.

l = 1. This means that we must have applied the trajectory prefix rule with ϕ ∈ Φ and
for some name f ′

B1 =
[

f | Φ
]
.B

(
f
) ϕ
−→

[
f ′ | Φ\\ϕ

]
.B

(
ϕ ; f ′

)
= B2

Then we get the following cases.

1. Case 1. B2
ψ
−→ B3 is result of applying trajectory prefix rule (5.3), i.e.,ψ ∈ Φ\\ϕ

and

B2 =
[

f ′ | Φ\\ϕ
]
.B

(
ϕ ; f ′

) ψ
−→

[
f ′′ | Φ\\ϕ\\ψ

]
.B

(
ϕ ; ψ ; f ′′

)
= B3

but then we have ϕ ; ψ ∈ Φ and Φ\\ϕ\\ψ = Φ\\(ϕ ; ψ) so that

B1 =
[

f | Φ
]
.B

(
f
) ϕ;ψ
−−→

[
f ′′ | Φ\\(ϕ ; ψ)

]
.B

(
ϕ ; ψ ; f ′′

)
= B3

145

i
i

i
i

i
i

i
i

B. P  C 5

2. Case 2. B2
ψ
−→ B3 is result of applying concatenation rule (5.4b), i.e., ψ =

ψ1 ; ψ2 with ψ ∈ Φ\\ϕ and

B
(
ϕ ; ψ1

) ψ2
−→ B3[

f ′ | Φ\\ϕ
]
.B

(
ϕ ; f ′

) ψ1;ψ2
−−−−→ B3

ψ1 ∈ Φ\\ϕ

So the premise B
(
ϕ ; ψ1

) ψ2
−→ B3 must hold. But as ϕ ; ψ1 ∈ Φ, we can apply

another instance of concatenation, i.e.,.

B
(
ϕ ; ψ1

) ψ2
−→ B3[

f | Φ
]
.B

(
ϕ ; f ′

) ϕ;ψ1;ψ2
−−−−−→ B3

ϕ ; ψ1 ∈ Φ

and done.

l > 1. 1. B1
ϕ
−→ B2 is result of concatenation, i.e.,ϕ = ϕ1 ;ϕ2. Then B1 =

[
f | Φ

]
.B with

ϕ1 ∈ Φ and we get B
(
ϕ1

) ϕ2
−→ B2, but by induction hypothesis B(ϕ)

ϕ2;ψ
−−−→ B3

and then by concatenation B1
ϕ1;ϕ1;ψ
−−−−−→ B3.

2. B1
ϕ
−→ B2 is result of

∑
-rule (5.6b), i.e., B1 =

∑
i∈I

Ci and for i ∈ I Ci
ϕ
−→ B2. Then

by induction hypothesis Ci
ϕ;ψ
−−→ B3 and by

∑
-rule B1

ϕ;ψ
−−→ B3.

3. B1
ϕ
−→ B2 is result of ‖HA -rule (5.9c), i.e., B1 = B11 ‖

H
A B12 and B11

ϕl
−→ B′11,B12

ϕr
−→

B′12, ϕ = ϕl ×H ϕr, and B2 = B′11 ‖
′

B12. This implies ψ = ψl ×H ψr and

B′11

ψl
−→ B′′11,B

′

12

φr
−→ B′′12, and consequently B3 = B′′11 ‖

H
A B′′12. Then by the

induction hypothesis

B11
ϕl;ψl
−−−→ B′11 B12

ϕr;ψr
−−−→ B′12

and by construction

B1
ϕ;ψl×Hψr
−−−−−−→ B′3

i.e.,

B1
ϕl×Hϕr;ψl×Hψr
−−−−−−−−−−→ B′3

Therefore
B1

ϕ;ψ
−−→ B′3

4. B1
ϕ
−→ B2 is result of hiding (5.10) or renaming (5.11) rules. Similar to choice

or parallel composition, but simpler, therefore we omit them.

5. Let B1
ϕ
−→ B2 be a result of recursion rule, i.e., B1 = X with X = B and

B1
ϕ
−→ B2. By induction hypothesis we have B

ϕ;ψ
−−→ B3. And by the recursion

rule we get X
ϕ;ψ
−−→ B3.

�

146

i
i

i
i

i
i

i
i

B.2. P  T 5.5.6

B.2 Proof of Theorem 5.5.6

Here we provide a proof of Theorem 5.5.6. We repeat theorem formulation for the
readers convenience.

Theorem B.2.1. Hybrid strong bisimulation equivalence on HTSs is a congruence w.r.t. the
operations of BHPC defined by the in Section 5.5.2.

Proof. Basically, we have to show that bisimulation is preserved under application of
all BHPC operators. We base oour proof on Milner [1989, p.99–101].

We will prove it by investigating all cases. Notice, that symmetric arguments have
to be applied to complete the proof.

Action prefix case. The proof for action prefix is standard.

Trajectory prefix case. The case with
[

f | Φ
]
.B1 and

[
f | Φ

]
.B2 is a bit more compli-

cated.

If B1(ϕ) ∼ B2(ϕ) for all ϕ ∈ Φ then
[

f | Φ
]
.B1(f) ∼

[
f | Φ

]
.B2(f).

For each ϕ ∈ Φ exists bisimulation relation such that
(
B1(ϕ),B2(ϕ)

)
∈ Rϕ. But

then
{([

g | Ψ
]
.B1,

[
g | Ψ

]
.B2

)
| for all Ψ

}
∪

⋃
ϕ Rϕ is the bisimulation relation we

need. Then we get two subcases:

1. Action a.[
f | Φ

]
.B1(f) a

−→ B′1 =⇒ by concatenation rule (5.4)
∃ε ∈ Φ =⇒ by concatenation rule (5.4)

B1(ε) a
−→ B′1 =⇒ by bisimulation assumption

∃B′2 ∼ B′1, B2(ε) a
−→ B′2 =⇒ by concatenation rule (5.4)[

f | Φ
]
.B2(f) a

−→ B′2

2. Trajectory ϕ. In this case we will use an induction on the length of the
derivation.
(a) Let h = 1. Then in one step only (5.3) can be applied. We get:[

f | Φ
]
.B1(f)

ϕ
−→

[
f ′ | Φ\\ϕ

]
.B1(ϕ ; f ′) =⇒ by trajectory prefix (5.3)

∃ϕ ∈ Φ =⇒ by trajectory prefix (5.3)[
f | Φ

]
.B2(f)

ϕ
−→

[
f ′ | Φ\\ϕ

]
.B2(ϕ ; f ′)

(b) Let h > 1. Let ϕ = ϕ1 ; ϕ2 be the relevant splitting of ϕ, i.e., such that
ϕ1 ∈ Φ. Then[

f | Φ
]
.B1

(
f
) ϕ
−→ B′1 =⇒ by concatenation (5.4) and ϕ = ϕ1 ; ϕ2

B1
(
ϕ1

) ϕ2
−→ B′1 =⇒ by bisimulation assumption

∃B′2 ∼ B′1, B2
(
ϕ1

) ϕ2
−→ B′2 =⇒ by concatenation rule (5.4)[

f | Φ
]
.B2

(
f
) ϕ
−→ B′2

147

i
i

i
i

i
i

i
i

B. P  C 5

Choice case. The choice case is standard, therefore we omit it.

Parallel composition case. If B1 ∼ B2 then there exists bisimulation relation R such
that (B1,B2) ∈ R. Then we will extend bisimulation relation with{(

B1 ‖
H
A C,B2 ‖

H
A C

)
| (B1,B2) ∈ R,C is a process

}
and {(

C ‖HA B1,C ‖HA B2

)
| (B1,B2) ∈ R,C is a process

}
.

Then we get two cases

1. Action a. Then we get three sub-cases, i.e., a ∈ A or a < A and B1 or C can
take it.

(a) Case a ∈ A.

B1 ‖
H
A C a
−→ B′1 ‖

H
A C′ =⇒ by parallel composition (5.9a)

B1
a
−→ B′1,C

a
−→ C′ =⇒ by bisimulation assumption

∃B′2 ∼ B′1, B2
a
−→ B′2 =⇒ by parallel composition (5.9a)

B2 ‖
H
A C a
−→ B′2 ‖

H
A C′

(b) Case a < A and B1 can take a.

B1 ‖
H
A C a
−→ B′1 ‖

H
A C =⇒ by parallel composition (5.9b)

B1
a
−→ B′1 =⇒ by bisimulation assumption

∃B′2 ∼ B′1, B2
a
−→ B′2 =⇒ by parallel composition (5.9b)

B2 ‖
H
A C a
−→ B′2 ‖

H
A C

(c) Case a < A and C can take a. Similar to the above case.

2. Trajectory ϕ. Let ϕ = ϕl ×H ϕr.

B1 ‖
H
A C

ϕ
−→ B′1 ‖

H
A C′ =⇒ by parallel composition (5.9c)

B1
ϕl
−→ B′1,C

ϕr
−→ C′ =⇒ by bisimulation assumption

∃B′2 ∼ B′1, B2
ϕl
−→ B′2 =⇒ by parallel composition (5.9c)

B2 ‖
H
A C

ϕ
−→ B′2 ‖

H
A C′

Hiding and renaming cases. We omit the proofs for hiding and renaming, because
they are standard, and moreover, similar to the above proofs.

Recursion case. The procedures following the lines of Milner [1989, p.99–101]. The
induction on the depth of derivation is used, and then all above cases are analysed
in the similar manner.

148

i
i

i
i

i
i

i
i

B.2. P  T 5.5.6

Let B̃ is the process expressions with at most X̃ process variables (i.e., recursive
calls) and P̃ be a set of process identifiers. Then we will use an expression B̃(P̃)
to denote a process expressions B̃ with X̃ substituted by P̃.

Let B̃1 and B̃2 contain variables X̃ at most. Let P̃1 , B̃1(P̃1) and P̃2 , B̃2(P̃2),
correspondingly. So we need to show that if B̃1 ∼ B̃2, then P̃1 ∼ P̃2.
For notational simplicity we will show it for a simpler version only. Let B1 and
B2 contain variable X at most. Let P1 , B1(P1) and P2 , B2(P2), correspondingly.
We show that if B1 ∼ B2, then P1 ∼ P2.
Let C(P) be a process with only one process variable X. Then let C(P1) and C(P2)
be C with process variable substituted by P1 and P2, correspondingly.
We will extend bisimulation relation with{

(C(P1),C(P2)) | C has at most process variable X
}

Let ≡ denote the syntactical equivalence of process expressions.

To show it is enough to prove C(P1)
a/ϕ
−−→ B′ ⇒ C(P2)

a/ϕ
−−→ B′′ ∧ B′ ∼ B′′. We will

prove it by induction on the depth of the derivation tree by which C(P1)
a/ϕ
−−→ B′

is derived. We will analyse different cases of C form.

1. Let C ≡ X. Then we get two cases, with action prefix and trajectory prefix.
We will analyse trajectory prefix case to exemplify the proof. Action prefix
case is similar. We have that C(P1) ≡ P1, then

P1
ϕ
−→ E =⇒ by a shorter derivation (5.12)

B1(P1)
ϕ
−→ E =⇒ by the ind. hypoth., with B1 ≡ C in bisimulation

B1(P2)
ϕ
−→ E′,E′ ∼ E =⇒ B1(X) ∼ B2(X)

∃B2
ϕ
−→ E′′,E′′ ∼ E′ =⇒ recursion (5.12)

∃P2 ∼ E′,E ∼ E′′

2. Let C ≡
[

f | Φ
]
.C′. Assume

[
f | Φ

]
.C′(P1)

ϕ
−→ B′1. Then either the prefix

rule (5.3) was applied, i.e., ϕ ∈ Φ and[
f | Φ

]
.C′(P1)

(
f
) ϕ
−→

[
f ′ | Φ\\ϕ

]
.C′(P1)

(
f/ϕ ; f ′

)
and thus also [

f | Φ
]
.C′(P2)

(
f
) ϕ
−→

[
f ′ | Φ\\ϕ

]
.C′(P2)

(
ϕ ; f ′/ f

)
Or the concatenation rule (5.4) can be applied, i.e., ϕ = ϕ1 ; ϕ2 with ϕ1 ∈ Φ
and

C′(P1)
(
ϕ1/ f

) ϕ2
−→ B′1 =⇒ by a shorter derivation

C′(P2)
(
ϕ1/ f

) ϕ2
−→ B′2,B

′

1 ∼ B′2 =⇒ using the previous case

C(P2)
(
ϕ1/ f

) ϕ2
−→ B′2,B

′

2 ∼ B′2
where C′(P1)

(
ϕ1/ f

)
≡ C′

(
ϕ1/ f

)
(P1), i.e., trajectory is substituted in C′.

149

i
i

i
i

i
i

i
i

B. P  C 5

3. For all other cases (formats of C) the proof is standard, see, e.g., Milner
[1989, p.99–101] or Brinksma [1988, p.68–69].

We have shown that for all operators strong bisimulation is a congruence. �

B.2.1 Formats based proof

Also a formats based proof of a congruence can be provided. According to Middelburg
[2001] it is enough to show that all rules are in panth format [Aceto et al., 2001] and
variables dependency graph [Middelburg, 2001] is well founded.

It is not difficult to see that all SOS rules are in the panth format [Aceto et al., 2001,
Middelburg, 2001, Mousavi, 2005]. Indeed, in each rule, all transitions in the premises
end with distinct variables that do not occur in the left-hand-sides of the conclusions.
We show it explicitly for several rules, and leave others as an exercise.

So, for example, a parallel composition (5.9) rules are in panth format. Indeed, the
right side of each premise in (5.9a), (5.9b) and (5.9c) is a single variable, i.e., B′1 and
B′2 in (5.9a), B′1 in (5.9b), and B′1 and B′2 in (5.9c), respectively. Moreover, the source
of conclusion of each rule contains only one functional symbol (parallel composition
‖

H
A) and all transitions in the premises end with distinct variables (B′1 and B′2 in (5.9a),

B′1 in (5.9b), and B′1 and B′2 in (5.9c)) that do not occur in the left-hand-sides of the
conclusions.

B.3 Proofs of Theorems 5.6.2 and 5.6.3

B.3.1 Proof of Theorem 5.6.2

In this appendix we prove the mini expansion law. We repeat formulation of Theo-
rem 5.6.2 for the readers convenience.

Theorem B.3.1 (Mini expansion law). Let Φ,Ψ be sets of trajectories such that ∀ϕ,ψ ∈
Φ T(ϕ) = T(ψ), ∀ϕ,ψ ∈ Ψ T(ϕ) = T(ψ). Let TΦ and TΨ be sets of trajectory qualifiers of Φ
andΨ, respectively. If hΦ = πTΦ (h) and hΨ = πTΨ (h), then[

f | Φ
]
.B

(
f
)
‖

H
A

[
g | Ψ

]
.C

(
g
)
= (B.4a)

[h | Φ ×H Ψ] . (B.4b)([
f ′ | Φ\\hΦ

]
.B

(
hΦ ; f ′/ f

)) wwwwwwH

A

[
g′ | Ψ\\hΨ

]
.C

(
hΨ ; g′/g

))
(B.4c)

We will assume thatΦ andΨ do not contain ε, because if it does, then it can always be rewritten
as

[
f | Φ \ ε

]
.B(f) + B(ε) according to (5.5).

Proof. The bisimulation relation which proves that the left hand and the right hand

150

i
i

i
i

i
i

i
i

B.3. P  T 5.6.2  5.6.3

sides of Equation (B.4) simulate each other, can be defined as follows

R =
{([

f | Φ
]
.B

(
f
)
‖

H
A

[
g | Ψ

]
.C

(
g
)
,

[h | Φ ×H Ψ] .([
f ′ | Φ\\hΦ

]
.B

(
hΦ ; f ′/ f

) wwwwwwH

A

[
g′ | Ψ\\hΨ

]
.C

(
hΨ ; g′/g

)))
| ∀B is a process, ∀Φ is a set of named trajectories

}
∪ Idα

(B.5)

where Idα is an identity function up to α-conversion.
We prove it by transforming the subexpressions and showing that both sides of the

expression simulate each other.
We will call expression (B.4a) a left hand side (or an lhs) and (B.4b) and (B.4c) a

right hand side (or an rhs).
The left hand side simulates the right hand side.
We will use an induction to prove that the left hand side simulates the right hand

side.
Let

B
′

=
[

f ′ | Φ\\hΦ
]
.B

(
hΦ ; f ′/ f

)
(B.6a)

C
′

=
[
g′ | Ψ\\hΨ

]
.C

(
hΨ ; g′/g

)
(B.6b)

1. By constructionΦ×HΨ does not contain ε. Therefore, in one step (h = 1) only the
trajectory prefix can be applied. Let χ ∈ Φ×HΨ, then by construction of Φ×HΨ

there ∃ϕ ∈ Φ,∃ψ ∈ Ψ such that χ = ϕ ×H ψ. Moreover, let Φ′ = Φ\\ϕ and Ψ′ =
Ψ\\ψ. By construction of composition of sets of trajectories and closure of sets of
trajectories we get (Φ ×H Ψ) \\χ =

(
(Φ\\ϕ) ×H (Ψ\\ψ)

)
∪ {ε} = (Φ′ ×H Ψ

′) ∪ {ε}.

Then

[h | Φ ×H Ψ] .
(
B
′

‖
H
A C

′) χ
−→ (B.7a)

[h′ | (Φ ×H Ψ) \\χ] .
(
B
′
wwwwwwH

A
C
′
)

(χ ; h′/h) =

[h′ | (Φ ×H Ψ) \\χ] .([
f ′ | Φ\\ϕ ; hΦ

]
.B

(
ϕ ; hΦ ; f ′/ f

) wwwwwwH

A

[
g′ | Ψ\\ψ ; hΨ

]
.C

(
ψ ; hΨ ; g′/g

))
=

[h′ | (Φ′ ×H Ψ
′) ∪ {ε}] . (B.7b)([

f ′ | Φ′\\hΦ
]
.B

(
ϕ ; hΦ ; f ′/ f

) wwwwwwH

A

[
g′ | Ψ′\\hΨ

]
.C

(
ψ ; hΨ ; g′/g

))
(B.7c)

If the rhs engages in χ, then correspondingly the lhs can engage in ϕ and ψ,
respectively. Then we get[

f | Φ
]
.B

(
f
)
‖

H
A

[
g | Ψ

]
.C

(
g
) χ
−→ (B.8a)[

f ′ | Φ\\ϕ
]
.B

(
ϕ ; f ′/ f

)
‖

H
A

[
g | Ψ\\ψ

]
.C

(
ψ ; g′/g

)
=[

f ′ | Φ′
]
.B

(
ϕ ; f ′/ f

)
‖

H
A

[
g | Ψ′

]
.C

(
ψ ; g′/g

)
(B.8b)

151

i
i

i
i

i
i

i
i

B. P  C 5

We can distinguish two cases according to the concatenation rules (5.4),i.e., we
can continue with (B.7b) or directly with (B.7c).

• It is easy to see that (B.7b) (with (B.7c)) and (B.8b) simulate each other,
because if they take one step, we get the same structure up to α-conversion
again. Then we can add both of them to bisimulation.

• If we choose to continue with (B.7c) part, then the resulting expression
of (B.7) can be rewritten as follows:[

f ′ | Φ′
]
.B

(
ϕ ; f ′/ f

)
‖

H
A

[
g′ | Ψ′

]
.C

(
ψ ; g′/g

)
(B.9a)

It is easy to see that (B.9) and (B.8) are identical up to α-conversion.

Therefore, it was shown that in one step the left hand side simulates the right
hand side.

2. Let the property holds for (h = k > 1). Then the derivation of h = k + 1 steps can
be constructed only by applying the concatenation rule. Then the last step in the
derivation tree is

[h | Φ ×H Ψ] .
(
B
′

‖
H
A C

′) χ′
−→ D′′,D′′

χ′′
−−→ D′[

h | Φ ×H Ψ
]
.
(
B
′

‖HA C
′) χ
−→ D′

such that χ = χ′ ; χ′′. By the induction hypothesis we know that for the lhs
derivation tree [

f ′ | Φ
]
.B ‖HA

[
g′ | Ψ

]
.C

χ′
−→ E′′

such that (D′′,E′′) ∈ R. If (D′′,E′′) ∈ Idα then it is proven. Otherwise we get the
same form with the trajectory prefixes, and the same form of the proof can be

applied. Furthermore, equation D′′
χ′′
−−→ D′ has a similar but a shorter derivation

tree.

The right hand side simulates the left hand side
The use a similar technique to show that the right hand side simulates the left hand

side. For the case of ε the same explanation, as in previours case, holds.
We use an induction to prove that the right hand side simulates the left hand side.

1. In one step (h = 1) only the trajectory prefix can be applied. The lhs can take
χ = ϕ ×H ψ (see above for the details), then we get[

f | Φ
]
.B

(
f
)
‖

H
A

[
g | Ψ

]
.C

(
g
) χ
−→ (B.10a)[

f ′ | Φ\\ϕ
]
.B

(
ϕ ; f ′/ f

)
‖

H
A

[
g | Ψ\\ψ

]
.C

(
ψ ; g′/g

)
=[

f ′ | Φ′
]
.B

(
ϕ ; f ′/ f

)
‖

H
A

[
g | Ψ′

]
.C

(
ψ ; g′/g

)
(B.10b)

See explanations in the beginning of the part The left hand side simulates the right
hand side for the details.
But then the rhs can take χ resulting in (B.9). It is easy to see that (B.9) and (B.10b)
are identical up to α-conversion.
Therefore, it was shown that in one step the left hand side simulates the right
hand side.

152

i
i

i
i

i
i

i
i

B.3. P  T 5.6.2  5.6.3

2. Let the property holds for (h = k > 1). Then the derivation of h = k + 1 steps can
be constructed only by applying the concatenation rule. Then the last step in the
derivation tree is [

f ′ | Φ
]
.B ‖HA

[
g′ | Ψ

]
.C

χ′
−→ E′′,E′′

χ′′
−−→ E′[

f ′ | Φ
]
.B ‖HA

[
g′ | Ψ

]
.C

χ
−→ E′

such that χ = χ′ ; χ′′. By the induction hypothesis we know that for the rhs
derivation tree

[h | Φ ×H Ψ] .
(
B
′

‖
H
A C

′) χ
−→ D′

such that (D′′,E′′) ∈ R. If (D′′,E′′) ∈ Idα then it is proven. Otherwise we get the
same form with the trajectory prefixes, and the same form of the proof can be

applied. Furthermore, equation E′′
χ′′
−−→ E′ has a similar but a shorter derivation

tree.

Bisimulation
Both sides simulate each other, therefore they are bisimilar. �

B.3.2 Proof of Theorem 5.6.3

Theorem B.3.2 (Expansion law). Let

B =
∑
i∈I

bi.Bi +
∑
j∈J

[
f j | Φ j

]
.B j, C =

∑
k∈K

ck.Ck +
∑
l∈L

[
gl | Ψl

]
.Cl

for some terms Bi,B j,Ck and Cl, actions bi and ck, trajectories
[

f j | Φ j

]
and

[
gl | Ψl

]
and the

corresponding sets of qualifiers names TΦ j and TΨl , finite index sets I ∩ J = K ∩ L = ∅. Let
h j = π

TΦ j (h) and hl = π
TΨl (h). Then

B ‖HA C = (B.11)∑
i∈I

bi<A

bi.(Bi ‖
H
A C) +

∑
k∈K
ck<A

ck.(B ‖HA Ck) +
∑

i∈I,k∈K
bi∈A,
bi=ck

bi.(Bi ‖
H
A Ck)+ (B.12)

∑
j∈J
l∈L

[
h | Φ j ×H Ψl

]
. (B.13)

([
f ′j | Φ j\\h j

]
.B j

(
h j ; f ′j / f j

) wwwwwwH

A

[
g′l | Ψl\\hl)

]
.Cl

(
hl ; g′l/gl

))
(B.14)

We will assume that Φ j and Ψ j do not contain ε, because if it does, then it can always be
rewritten as

[
f | Φ \ ε

]
.B(f) + B(ε) according to (5.5).

The proof of Theorem 5.6.3 is based on Theorem 5.6.2 and Milner [1989, p.96-97].

Proof. Continuous-time and discrete behaviours only influence each other, but do not
interact with each other, i.e., they act at a different time. Therefore, in the parallel com-
position, continuous behaviours compose with each other, and, respectively, discrete

153

i
i

i
i

i
i

i
i

B. P  C 5

behaviours interact with each other. Consequently, the expansion law can be split in
to two parts: a discrete and a continuous.

Let B =
∑
i∈I

bi.Bi +
∑
j∈J

[
f j | Φ j

]
.B j and C =

∑
k∈K

ck.Ck +
∑
l∈L

[
gl | Ψl

]
.Cl.

Discrete behaviour
The discrete part corresponds to the expansion law in the ordinary process algebras.

The proof is similar to one in Milner [1989, p.96–97].

B ‖HA C =
∑
i∈I

bi<A

bi.(Bi ‖
H
A C) +

∑
k∈K
ck<A

ck.(B ‖HA Ck) +
∑

i∈I,k∈K
ck=bi∈A

bi.(Bi ‖
H
A Ck)

Continuous-time behaviour
The proof for the continuous-time behaviour follows from Theorem 5.6.2 and

specifics of the interaction of continuous and discrete behaviour.
We will show that the components can be moved inside the sum.∑

j∈J

[
f j | Φ j

]
.B j ‖

H
A C =

∑
j∈J

([
f j | Φ j

]
.B j ‖

H
A C

)
(B.15)

There are two possible cases.
In the first case C = a.C′, then there are only two possible evolutions on the both

sides ∑
j∈J

[
f j | Φ j

]
.B j ‖

H
A a.C′ a

−→
∑
j∈J

[
f j | Φ j

]
.B j ‖

H
A C′ a < A∑

j∈J

([
f j | Φ j

]
.B j ‖

H
A a.C′

) a
−→

∑
j∈J

([
f j | Φ j

]
.B j ‖

H
A C′

)
a < A

or deadlock, if a ∈ A. Therefore both sides can simulate each other and are bisimilar.
If C =

[
g | Ψ

]
.C′, then∑

j∈J

[
f j | Φ j

]
.B j ‖

H
A

[
g | Ψ

]
.C′ =

∑
j∈J

([
f j | Φ j

]
.B j ‖

H
A

[
g | Ψ

]
.C′

)
Analogous induction as in Theorem 5.6.2 can be applied. We just show how it works
for the base step.

When C starts with trajectory prefix, the same trajectories can selected on the both
sides.

• In the
∑
j∈J

[
f j | Φ j

]
.B j ‖

H
A

[
g | Ψ

]
.C′ the system can choose any trajectory, where g

synchronises with f j.

• From the
∑
j∈J

([
f j | Φ j

]
.B j ‖

H
A C′

)
the system evolution is again defined as a choice

over j of all trajectories, where f j synchronises with g.

Let πT(ϕ)(χ) = ϕ,πT(ψ)(χ) = ψ and J′ ⊆ J is a subset of trajectories that includes χ.
Then, by taking χ we get∑

j∈J

[
f j | Φ j

]
.B j

wwwwwwH

A

[
g | Ψ

]
.C′

χ
−→[

f ′ | Φ j′\\ϕ
]
.B j′

(
ϕ ; f ′/ f j′

) wwwwwwH

A

[
g′ | Ψ\\ψ

]
.C′

(
ψ ; g′/g

)
j′ ∈ J′ (B.17a)

154

i
i

i
i

i
i

i
i

B.3. P  T 5.6.2  5.6.3

and ∑
j∈J

([
f j | Φ j

]
.B j

wwwwwwH

A

[
g | Ψ

]
.C′

)
χ
−→[

f ′ | Φ j′\\ϕ
]
.B j′

(
ϕ ; f ′/ f j′

) wwwwwwH

A

[
g′ | Ψ\\ψ

]
.C′

(
ψ ; g′/g

)
j′ ∈ J′ (B.18a)

It is easy to see that both resulting expressions are identical up to α-conversion.
Then we can repeat the proof of Theorem 5.6.2 showing that we get the same

structure up to α-conversion, and it is already explained, why it happens.
Then the same technique can be applied for the construction with choice operator

on both sides to show that both sides simulate each other.
Therefore, on both sides the system evolves in the same way. �

155

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

C
Functions from Chapter 7

In this appendix we provide Table C.1 of all functions mentioned in Chapter 7 and
give short explanation for functions for which pseudo code is not provided. Most of
late are used to abstract from the chosen data types.

Table C.1: List of all functions from Chapter 7

Name Ref Description
BHPC_simulation 7.1 Main simulation function.
Initialise 7.3 Initialisation.
TakeTransition 7.2 Implements step of taking a transition.

NondetChoice n.a.
Non-deterministically choose an element
from the set of elements. In a simple case
may provides menu for user to choose.

TakeContinuousTransition 7.5 Implements procedures necessary to take a
continuous transition.

TakeDiscreteTransition n.a. Implements procedures necessary to take a
discrete transition.

transfToNF 7.4 Transforms a process to a normal form.

isEmpty n.a. Syntactical function, checks is process
expression empty.

InitialiseQualifiers n.a.

Assigns initial values to corresponding
qualifiers (and other variables, e.g.,
derivatives of qualifiers), implementation
depends on the chosen data types.

isNormForm n.a. Syntactically checks, is a process
expression is in the normal form.

Continued on next page

157

i
i

i
i

i
i

i
i

C. F  C 7

Table C.1 – continued from previous page
Name Ref Description

setDeadlock n.a. Assigns to a process expression deadlock.
Data types dependent.

setState n.a. Assigns new state from the old one and
status changes. Data types dependent.

setProcess n.a. Assigns new state from the old one and
process. Data types dependent.

rename n.a. Performs syntactical renaming on the
actions to be taken. Data types dependent.

hide n.a.
Performs syntactical hiding operation on
the actions to be taken. Data types
dependent.

replaceChoiceComp n.a. Replaces i’th component of the choice by a
new one. Data types dependent.

applyExpLaw C.1
Straightforward application of modified
expansion law (just two nested cycles and
case). Data types dependent.

resolveRecursion n.a.

Almost the same, as initialise, i.e., new
process expression is assigned to the
current state and the corresponding
qualifiers initialised.

DefineEvents n.a.

Takes a set of trajectory prefixes, extracts
conditions and exit-conditions and
generates halting conditions for numerical
solvers. Data types and numerical solver
dependent. Different halting conditions are
supported by different solvers. E.g., in
B prototype M is used as a
numerical solver, and it accepts conditions
only in special format
(http://www.maplesoft.com).
A simplified version of DefineEvents is
used in Appendix D. All exit-conditions
are collected, solved using M. If a
solution for a qualifiers is an interval, then
a halting value is nondeterministically
chosen from the interval. If a solution is a
single value, then this value is chosen.

Continued on next page

158

http://www.maplesoft.com

i
i

i
i

i
i

i
i

Table C.1 – continued from previous page
Name Ref Description

CreateCombinations n.a.

Takes a process expression in normal form
and creates relevant combinations. The
procedure is described in Section 7.2.6
A considerably simplified version of
CreateCombinations is implemented in
B prototype (Appendix D). It creates
only one combination from a parallel
composition of trajectory prefixes.

Solve n.a.

Takes a set of trajectory prefixes and
halting conditions, extracts equations,
initial conditions and halting conditions
and supplies it to a numerical solver. Data
types and numerical solver dependent, i.e.,
different solvers may have different
syntactical and semantic limitations. In
some cases, the procedure can be
complicated technically, e.g., when a solver
works as a library, then it may be necessary
to compile it together with equations.
A version that uses M is implemented
in B prototype. It defines instantiation
of qualifiers, differential equations and
halting conditions. Then M dsolve is
used to solve them.

NondetChooseCombination n.a.
Implements non-deterministic choice form
a set of combinations created by
CreateCombinations.

UpdateState n.a. Updates processes by replacing the
corresponding components of choice.

UpdateSimState n.a. Updates state and status depending on the
event.

To illustrate a potential complexity of the above mentioned functions we provide
applyExpLaw Algorithm C.1. Functions isActionPrefix and isTrajPrefix return
true if the parameter is an action prefix and a trajectory prefix or a parallel compo-
sition of trajectory prefixes, correspondingly. Function mergeQualifiers validates
consistency of the qualifiers values and applies corresponding procedures to merge.

Most of functions appearing in Algorithm 7.4 were implemented in B proto-
type. The only exceptions are rename and hide. Moreover, discrete versions of all
these functions (or corresponding techniques) are defined in Schonenberg [2006].

159

i
i

i
i

i
i

i
i

C. F  C 7

� �
algorithm applyExpLaw (state ′, state ′′: S, A, H: S , status :S)
var state : S ;
begin
/∗ state ′.p =

∑
i∈I elem.Bi where elem is an action−prefix or ∗/

/∗ a parallel composition of trajectory−prefixes or one trajectory prefix ∗/
state.t = state ′.t ;
state.p =

∑
{};

foreach lelem.lBi in state ′.P do
foreach relem.rBi in state ′′.P do

if isTrajPref(lelem) and trajPref(relem)
then

state.P = state.P + (lelem.lBi ‖HA relem.rBi);
else

if isAction(lelem) and isAction(relem)
then

case lelem, relem do
lelem ∈ A, relem ∈ A:

if lelem = relem
then state.P = state.P + lelem.(lBi ‖HA rBi);

end
lelem < A, relem ∈ A:

state.P = state.P + lelem.(lBi ‖HA relem.rBi);
lelem ∈ A, relem < A:

state.P = state.P + relem.(lelem.lBi ‖HA rBi);
lelem < A, relem < A:

state.P = state.P + lelem.(lBi ‖HA relem.rBi);
state.P = state.P + relem.(lelem.lBi ‖HA rBi);

end
else

if isAction(lelem) and lelem < A
then state.P = state.P + lelem.(lBi ‖HA rBi);

end
if isAction(relem) and relem < A

then state.P = state.P + relem.(lBi ‖HA rBi);
end

end
(state.Q, status) = mergeQualifiers(state ′.Q, state ′′.Q, status);

end
end
return (status, state);

end� �
Algorithm C.1: Transform to normal form

160

i
i

i
i

i
i

i
i

D
Bhave prototype

In this chapter we provide a concise description of a prototype of Behavioural Hybrid
Process simulator (B prototype) that is a part of B toolset 1. B toolset
consists of several tools:

• BHPC Translator (BHPCC) [van Putten, 2006] is a parser of Behavioural Hybrid
Process Calculus(BHPC) that translates BHPC specification to an internal format,
and BHPC2Mod translator of sequential version of calculus to Modelica,

• D B [Krilavičius and Schonenberg, 2005, Schonenberg, 2006] is a tool
for discrete simulation of Behavioural Hybrid Process Calculus,

• B prototype is a prototype of Behavioural Hybrid Process Calculus simula-
tion tool.

For more information about B toolset see Bhave prot, Krilavičius and Schonen-
berg [2005], Schonenberg [2006], van Putten [2006] and http://fmt.cs.utwente.nl/
tools/bhave.

Theoretical background for B prototype is provided in Chapter 7. The tool
was developed to validate the proposed techniques and to investigate what kind of
technical problems may occur in the implementation of simulator. Therefore, the
tool has rather limited functionality and performance. However, we present several
examples demonstrating that even a prototype can be used to investigate interesting
hybrid systems.

D.1 Functionality and input language

The tool accepts a subset of Behavioural Hybrid Process Calculus operators:

1See http://fmt.cs.utwente.nl/tools/bhave.

161

http://fmt.cs.utwente.nl/tools/bhave
http://fmt.cs.utwente.nl/tools/bhave
http://fmt.cs.utwente.nl/tools/bhave

i
i

i
i

i
i

i
i

D. B 

BHPCC
BHPC Parser

Bhave Prototype
Prototype of Hybrid

Simulator

BHPC2Mod
Translator to Modelica

Specification
BHPC language

Specification
Internal format (XML)

Discrete Bhave
Discrete Simulator

Figure D.1: B toolset

• Stop process (0).

• Action prefix (a.B).

• Trajectory prefix (
[
q1, . . . , qm

∣∣∣ Φ y Pred
ww� Predexit

]
.B). However, it is restricted to

a certain class of continuous behaviours and conditions (limitations are mostly
imposed by the specifics of M 9.52 that is used as an ODE solver)

◦ Trajectories (Φ) are represented by ordinary differential equations (ODE)
that are solvable by M.

◦ Conditions (Pred) are always true.

◦ Exit conditions (Predexit) are represented by the simple inequalities of type
x <6=>> e, where x is a qualifier and c is an expression solvable by M.
Moreover, more complex exit conditions can be given in a form

∨
i cond(xi)

where xi is a particular qualifier. In other words, exit conditions can be
given as a disjunction over the exit conditions on the different variables.

• Hiding (new w.B) is ignored. However, user is informed about it, if it is encoun-
tered.

• Renaming (B [σ]) is ignored. However, user is informed about it, if it is encoun-
tered.

• Guards (〈Pred〉 .B) are given only by the simple inequalities solvable by M.

• A generalised choide
∑
i∈I

Bi.

2http://www.maplesoft.com/

162

http://www.maplesoft.com/

i
i

i
i

i
i

i
i

D.1. F   

• Parallel composition (B ‖HA B). Parallel simulation of trajectory prefixes is per-
formed in a following way with consequent limitations:

◦ All differential equations are collected from the participating processes.

◦ All exit conditions are collected, grouped by qualifiers and simplified. E.g.,
if we have trajectory prefixes with exit conditions {h = 0} ∨ {v > −10, v < 5}
and {h = 5} ∨ {v > −5, v < 10}, correspondingly, then we get {v > −5, v < 5}.

◦ Initial values assignments are collected.

◦ Constructed system of differential equations with initial values and stop
conditions is passed to M and simulated until any of exit conditions is
satisfied or maximal simulation time is reached.

◦ All trajectory prefixes stopped and simulation continues with succeeding
processes, i.e., concatenation is not supported.

• Recursion (P), where re-initialisation parameters are given by simple expressions
solvable by M.

All these restrictions mean that only part of the theory presented in Chapter 7 is tested.
However, we present several examples, where we show that even the B prototype
may be used to investigate quite interesting systems.

D.1.1 Simplified treatment of parameters

In Bprototype we use a simplified treatment of processes parametrisation. We use
parameters as shortcuts to initialise qualifiers. Moreover, we access the last simulation
value using the corresponding qualifier identifier.

Components of parallel composition may have different qualifiers values (Sec-
tion 7.2.2). Therefore, we propose a decision procedure to resolve it and check for the
inconsistencies. Another choice would be to treat such behaviour as inconsistent.

Let Ql,Qr and Qp be sets of qualifiers values of the left, right and parallel compo-
sition (parent) processes, correspondingly. Let Q is a resulting values set. Then the
following cases are possible:

1. Ql = Qr =⇒ Q = Ql = Qr.

2. Ql , Qr = Qp =⇒ Q = Ql and if some qualifiers are defined in Qr and undefined
in Ql (it may happen, if), then their values are taken from Qr.

3. Qr , Ql = Qp =⇒ Q = Qr and if some qualifiers are defined in Ql and undefined
in Qr, then their values are taken from Ql.

4. Ql , Qr , Qp then for all corresponding ql ∈ Ql, qr ∈ Qr, qp ∈ Qp and q ∈ Q:

(a) ql = qr =⇒ q = ql = qr,

(b) if qr is undefined or ql , qr = qp =⇒ q = ql,

(c) if ql is undefined or qr , ql = qp =⇒ q = qr,

(d) qr , ql , qp inconsistency is detected.

163

i
i

i
i

i
i

i
i

D. B 

In other words, we take the new values and the case, when both subprocesses try to
assign to the same qualifiers different values we treat as inconsistency. Moreover, if
the new values is not consistent with the succeeding trajectory prefix, it should be
detected when simulation of the trajectory prefix starts.

Example D.1.1. Consider process expression

[k, l,m | k′ = 1, l′ = 0,m′ = −1 ⇓ k > 3] ‖k,l,m Controller(2, l,m)

with Qp = {k = 0, l = 1,m = 10} and the process definition Controller(k, l,m). Then by
applying Algorithm 7.4 we get

Ql ={k = 0, l = 1,m = 10}
Qr ={k = 2, l = 1,m = 10}

There are several ways to resolve such situation. It can be treated as inconsistency or
some procedure can be applied to resolve it. We choose the second option and apply
the above defined procedure and get Qr = {k = 2, l = 1,m = 10}. �

An extended procedure can be applied. E.g., users can be warned about the
occurrence of (2), (3), (4b), (4c) and (4d), and be allowed to choose how to proceed.

D.2 Technical implementation details

We give some technical implementation details.

• Language: C++ (standard). Compiler: Microsoft (R) 32-bit C/C++ Optimizing
Compiler Version 12.xx.xxxx. Additional libraries: Xerces-C++ 2.7.0 (a validat-
ing XML parser written in a portable subset of C++); maple.h (Open M).
Code statistics: ∼ 9klines (∼ 5klines of pure code). Documentation: Doxy-
gen 1.4.5. Operating systems: Windows XP (however C++ code and Xerces-C
should be portable to other operating systems, Open Maple portability was not
investigated).

• Differential equations, expressions, inequalities solver: M 9.5.

• Input format: Behavioural Hybrid Process Calculus in the internal format [van
Putten, 2006] provided by BHPCC (BHPC compiler) [van Putten, 2006].

• Output format: text file, with tabulation symbol separated columns containing
time, values and actions.

• Visualisation: presently plots can be produced using Microsoft (R) Excel 2003
XY(Scatter) routine of Chart Wizard.

D.3 Examples

In this section we present several examples to show B prototype capabilities.

164

i
i

i
i

i
i

i
i

D.3. E

-26

-16

-6

4

14

24

0 5 10 15

Figure D.2: Altitude and velocity of the
ball

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Figure D.3: Fluid level changes of two tanks

18

18.5

19

19.5

20

20.5

21

21.5

22

0 5 10 15 20

Figure D.4: Temperature changes for simple and upgraded thermo-
stat

Example D.3.1 (Bouncing ball). The classical bouncing ball Example 5.8.1. The simu-
lation results are depicted in Figure D.2. Velocity is depicted by the dashed line and
altitude is depicted by the solid line. �

Example D.3.2 (Simple and controlled thermostat). We reuse an example of the sim-
ple thermostat (Example 5.8.2).

Results of simulation of the simple and controlled thermostat are depicted in
Figure D.4. The dashed line depicts evolution of the simple thermostat and the solid
line depicts evolution of the coupled version. �

Example D.3.3 (Two tanks). Consider two tanks model from Example 5.8.4. Then the
simulation results for dleft + dright > lin are visualised in Figure D.3.

We would like to note that both modular and simple versions were simulated, and
the results were the same. Unfortunately, renaming and parts of parametrisation were
carried-out manually in the modular version, because the tool does not support it

165

i
i

i
i

i
i

i
i

D. B 

yet. �

D.4 Conclusions

In this appendix we concisely described B prototype and demonstrated how it
simulates small examples of systems that exhibit hybrid behaviour. The tool is not
intended for case studies or industrial applications, but more for experiments with
different simulation algorithms and language constructs.

For more information about B prototype and B toolset see Bhave prot,
Krilavičius and Schonenberg [2005], Schonenberg [2006], van Putten [2006] and http:
//fmt.cs.utwente.nl/tools/bhave.

166

http://fmt.cs.utwente.nl/tools/bhave
http://fmt.cs.utwente.nl/tools/bhave

i
i

i
i

i
i

i
i

Bibliography

L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In J.A.
Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra, chapter 3,
pages 197–292. Elsevier Science Publishers, Ltd., 2001.

R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Oliv-
ero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theor.
Comput. Sci., 138(1):3–34, 1995. ISSN 0304-3975.

R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: An algorith-
mic approach to the specification and verification of hybrid systems. In Grossman
et al. [1993], pages 209–229. ISBN 3-540-57318-6.

R. Alur, T. Dang, J. M. Esposito, R. B. Fierro, Y. Hur, F. Ivančić, V. Kumar, I. Lee, P. Mishra,
G. J. Pappas, and O. Sokolsky. Hierarchical hybrid modeling of embedded systems.
In Proc. of the First International Workshop on Embedded Software(EMSOFT’01), pages
14–31. Springer, 2001. ISBN 3-540-42673-6. URL http://citeseer.nj.nec.com/
451283.html.

R. Alur and D. Dill. The theory of timed automata. In J. W. de Bakker, C. Huizing, W. P.
de Roever, and G. Rozenberg, editors, Proceedings of Real-Time: Theory in Practice,
volume 600 of LNCS, pages 45–73. Springer, June 1992. ISBN 3-540-55564-1.

R. Alur, J. M. Esposito, M. Kim, V. Kumar, and I. Lee. Formal modeling and anal-
ysis of hybrid systems: A case study in multi-robot coordination. In Proc. of the
World Congress on Formal Methods in the Development of Computing Systems (FM’99),
pages 212–232. Springer, 1999. ISBN 3-540-66587-0. URL citeseer.nj.nec.com/
alur99formal.html.

R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specification of hybrid
systems in CHARON. In Lynch and Krogh [2000], pages 6–19. ISBN 3-540-67259-1.
URL http://citeseer.nj.nec.com/article/alur00modular.html.

R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded
systems. IEEE Trans. Soft. Eng., 22(3):181–201, 1996a. ISSN 0098-5589.

R. Alur, T.A. Henzinger, and E.D. Sontag, editors. Proceedings of the DIMACS/SYCON
workshop on Hybrid systems III: verification and control, volume 1066 of LNCS, Secaucus,
NJ, USA, 1996b. Springer. ISBN 3-540-61155-X.

R. Alur and G. J. Pappas, editors. Hybrid Systems: Computation and Control, 7th Interna-
tional Workshop, HSCC 2004, Philadelphia, PA, USA, March 25-27, 2004, Proc., volume
2993 of LNCS, 2004. Springer. ISBN 3-540-21259-0.

167

http://citeseer.nj.nec.com/451283.html
http://citeseer.nj.nec.com/451283.html
citeseer.nj.nec.com/alur99formal.html
citeseer.nj.nec.com/alur99formal.html
http://citeseer.nj.nec.com/article/alur00modular.html

i
i

i
i

i
i

i
i

B

T. Amnell, E. Fersman, P. Pettersson, W. Yi, and H. Sun. Code synthesis for timed
automata. Nordic J. of Computing, 9(4):269–300, 2002. ISSN 1236-6064.

T. Anderson, R. de Lemos, J. S. Fitzgerald, and A. Saeed. On formal support for
industrial-scale requirements. In Grossman et al. [1993], pages 426–451. ISBN 3-540-
57318-6.

M. Andersson. Object-Oriented Modeling and Simulation of Hybrid Systems. PhD thesis,
Department of Automatic Control, Lund Inst. of Technology, Sweden, December
1994.

S. Andova. Probabilistic Process Algebra. PhD thesis, Technical University of Eindhoven
(TU/e), 2002.

P. J. Antsaklis, W. Kohn, M. D. Lemmon, A. Nerode, and S. Sastry, editors. Hybrid
Systems V, volume 1567 of LNCS, 1999. Springer. ISBN 3-540-65643-X.

P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems II, volume
999 of LNCS, 1995. Springer. ISBN 3-540-60472-3.

P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems IV, volume
1273 of LNCS, 1997. Springer. ISBN 3-540-63358-8.

E. Asarin, T. Dang, and O. Maler. d/dt a tool for reachability analysis of continuous and
hybrid systems, 2001. URL http://www-verimag.imag.fr/~tdang/reach_nolcos.
ps.gz.

J. C. M. Baeten and W. P. Weijland. Process algebra. Cambridge University Press, New
York, NY, USA, 1990. ISBN 0-521-40043-0.

J.C.M. Baeten and J.A. Bergstra. Real Time Process Algebra. Formal Aspects of Computing,
3:142–188, 1991.

J.C.M. Baeten and J.A. Bergstra. Process algebra with propositional signals. Theor.
Comput. Sci., 177(2):381–405, 1997.

J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. EATCS Monographs
Series. Springer, 2002.

P.I. Barton and C.K. Lee. Modeling, simulation, sensitivity analysis, and optimization
of hybrid systems. ACM Trans. Model. Comput. Simul., 12(4):256–289, 2002. ISSN
1049-3301.

G. Behrmann, A. David, and K. G. Larsen. A tutorial on U. In M. Bernardo and
F. Corradini, editors, Formal Methods for the Design of Real-Time Systems: 4th Interna-
tional School on Formal Methods for the Design of Computer, Communication, and Software
Systems, SFM-RT 2004, number 3185 in LNCS, pages 200–236. Springer, September
2004. URL http://www.cs.auc.dk/~adavid/publications/21-tutorial.pdf.

A. Bemporad. Modeling, control, and reachability analysis of discrete-time hybrid systems.
DISC, September 2003. URL http://www.dii.unisi.it/cgi-bin/ab_download.
cgi?getpaper&paper=Bem03b. Lecture Notes of the DISC Course.

168

http://www-verimag.imag.fr/~tdang/reach_nolcos.ps.gz
http://www-verimag.imag.fr/~tdang/reach_nolcos.ps.gz
http://www.cs.auc.dk/~adavid/publications/21-tutorial.pdf
http://www.dii.unisi.it/cgi-bin/ab_download.cgi?getpaper&paper=Bem03b
http://www.dii.unisi.it/cgi-bin/ab_download.cgi?getpaper&paper=Bem03b

i
i

i
i

i
i

i
i

B

A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and
constraints. Automatica, 35(3):407–427, March 1999.

A. Bemporad, F.D. Torrisi, and M. Morari. Discrete-time hybrid modeling and ver-
ification of the batch evaporator process benchmark. European Journal of Control:
Verification of Hybrid Systems, 7(4):382–399, 2001.

M.D. Di Benedetto and A.L. Sangiovanni-Vincentelli, editors. Proc. of 4th International
Workshop on Hybrid Systems: Computation and Control, volume 2034 of LNCS, March
2001. Springer. ISBN 3-540-41866-0.

J. Bengtsson, W.O.D. Griffioen, K.J. Kristoffersen, K.G. Larsen, F. Larsson, P. Pettersson,
and W. Yi. Automated analysis of an audio control protocol using U. Journal
of Logic and Algebraic Programming, 52–53:163–181, July 2002.

J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, Y. Wang, and C. Weise. New
generation of U. In Int. Workshop on Software Tools for Technology Transfer, June
1998.

J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Informa-
tion and Computation, 60(1/3):109–137, 1984.

J.A. Bergstra and C.A. Middelburg. Process algebra for hybrid systems. Technical
report, Dept. of Math. and Comp. Science, Technical University of Eindhoven (TU/e),
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands, 2003.

J.A. Bergstra and C.A. Middelburg. Process algebra for hybrid systems. Theor. Comput.
Sci., 335(2/3):215–280, 2005.

K. Berkenkötter and R. Kirner. Model-based testing of reactive systems. In Broy et al.
[2005], pages 355–387. ISBN 3-540-26278-4.

H.C. Bohnenkamp, H. Hermanns, R. Klaren, A. Mader, and Y.S. Usenko. Stochastic
assessment of schedules in a lacquer production plant. In Proceedings of the 1st
International Conference on the Quantitative Evaluation of Systems (QEST’04), pages
28–37, September 2004.

T. Bolognesi and H. Brinksma. Introduction to the ISO specification language LOTOS.
Computer Networks, 14:25–59, 1987.

A.V. Borshchev, Y.B. Kolesov, and Y.B. Senichenkov. Java engine for UML based
hybrid state machines. In 2000 Winter Simulation Conference (WSC’00), Or-
lando, Florida, USA, December 2000. URL http://www.xjtek.com/files/papers/
javaengine2000.pdf.

M. Branicky. Multiple Lyapunov functios and other analysis tools for switched and
hybrid systems. IEEE Trans. Autom. Control, 43:475–482, April 1998.

M. S. Branicky, T.A. Johansen, I. Petersen, and E. Frazzoli. On-line techniques for
behavioral programming. In Proc. of 39th IEEE Conf. on Decision and Control, pages
1840–1845, Sydney, Australia, December 2000. IEEE Computer Society Press. URL
http://citeseer.nj.nec.com/420838.html.

169

http://www.xjtek.com/files/papers/javaengine2000.pdf
http://www.xjtek.com/files/papers/javaengine2000.pdf
http://citeseer.nj.nec.com/420838.html

i
i

i
i

i
i

i
i

B

M.S. Branicky. Stability of hybrid systems: State of the art. In Proc. of 36th IEEE Conf. on
Decision and Control, pages 120–125, San Diego, CA, December 1997. IEEE Computer
Society Press.

M.S. Branicky, V.S. Borkar, and S.K. Mitter. A unified framework for hybrid control:
Background, model, and theory. In Proc. of 33th IEEE Conf. on Decision and Control,
Lake Buena Vista, FL, December 1994. IEEE Computer Society Press.

M.S. Branicky and S.E. Mattsson. Simulation of hybrid systems. In Antsaklis et al.
[1997], pages 31–56. ISBN 3-540-63358-8.

K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations. Springer, 1991. ISBN 0-387-97502-0.

E. Brinksma. On the Design of Extended Lotos. PhD thesis, University of Twente, 1988.

E. Brinksma and T. Krilavičius. Behavioural hybrid process calculus. Technical Report
TR-CTIT-05.45, CTIT, University of Twente, 2005. URL http://www.cs.utwente.
nl/~krilaviciust/publications/BHPC_techrep.pdf.

L. Brandán Briones and E. Brinksma. A test generation framework for quiescent real-
time systems. In Formal Approaches to Software Testing: 4th International Workshop,
FATES, volume 3395/2005, 2004. ISBN 3-540-25109-X. URL http://fmt.cs.utwente.
nl/research/testing/files/BBB04.ps.gz.

L. Brandán Briones and E. Brinksma. Testing real-time multi input-output systems,
November 2005. URL http://fmt.cs.utwente.nl/research/testing/files/
BBB05.ps.gz.

J. F. Broenink. Introduction to physical systems modelling with bond graphs, 1999.
DRAFT (version 2, 20-5-99), to be published in the SiE Whitebook on Simulation
methodologies, probably 1999.

J.F. Broenink and P.B.T. Weustink. A combined system simulator for mechatronic
systems. In Proc. of Modeling and Simulation (ESM’96), pages 225–229, Budapest,
Hungary, 1996. Publishing SCS Europe, Ghent. ISBN 1-56555-097-8.

C. Brooks, A. Cataldo, E.A. Lee, J. Liu, X. Liu, S. Neuendorffer, and H. Zheng. HV-
: A hybrid system visual modeler. Technical Report Technical Memorandum
UCB/ERL M04/18, University of California, Berkeley, CA 94720, June 2004. URL
http://ptolemy.eecs.berkeley.edu/publications/papers/04/hyvisual.

M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors. Model-Based
Testing of Reactive Systems, Advanced Lectures, volume 3472 of LNCS, 2005. Springer.
ISBN 3-540-26278-4.

L. Carloni, M.D. Di Benedetto, R. Passerone, A. Pinto, and A. Sangiovanni-Vincentelli.
Modeling techniques, programming languages and design toolsets for hybrid sys-
tems. Technical Report Deliverable DHS4-5-6, Project IST-2001-38314 COLUMBUS,
2004. URL http://www.columbus.gr/documents/public/WPHS/Columbus_DHS3_0.
2_Cover.pdf.

170

http://www.cs.utwente.nl/~krilaviciust/publications/BHPC_techrep.pdf
http://www.cs.utwente.nl/~krilaviciust/publications/BHPC_techrep.pdf
http://fmt.cs.utwente.nl/research/testing/files/BBB04.ps.gz
http://fmt.cs.utwente.nl/research/testing/files/BBB04.ps.gz
http://fmt.cs.utwente.nl/research/testing/files/BBB05.ps.gz
http://fmt.cs.utwente.nl/research/testing/files/BBB05.ps.gz
http://ptolemy.eecs.berkeley.edu/publications/papers/04/hyvisual
http://www.columbus.gr/documents/public/WPHS/Columbus_DHS3_0.2_Cover.pdf
http://www.columbus.gr/documents/public/WPHS/Columbus_DHS3_0.2_Cover.pdf

i
i

i
i

i
i

i
i

B

F.E. Cellier. Continuous System Modeling. Springer, 1991. ISBN 0-387-97502-0.

E.M. Clarke and J.M. Wing. Formal methods: state of the art and future directions.
ACM Comput. Surv., 28(4):626–643, 1996. ISSN 0360-0300.

P.J.L. Cuijpers. Hybrid Process Algebra. PhD thesis, Technical University of Eindhoven
(TU/e), 2004.

P.J.L. Cuijpers, J.F. Broenink, and P.J. Mosterman. Constitutive hybrid processes. In
In proc. of Conference on Conceptual Modeling and Simulation (CSM 2004), Genoa, Italy,
2004.

P.J.L. Cuijpers and M.A. Reniers. Hybrid process algebra. Technical report, Dept. of
Math. and Comp. Science, Technical University of Eindhoven (TU/e), P.O. Box 513,
NL-5600 MB Eindhoven, The Netherlands, 2003.

P.J.L. Cuijpers and M.A. Reniers. Hybrid process algebra. JLAP, 62(2):191–245, 2005.

F. A. Cuzzola and M. Morari. A generalized approach for analysis and control of
discrete-time piecewise affine and hybrid systems. In Benedetto and Sangiovanni-
Vincentelli [2001], pages 189–203. ISBN 3-540-41866-0.

P.R. D’Argenio. Algebras and Automata for Timed and Stochastic Systems. PhD thesis,
Department of Computer Science, University of Twente, November 1999.

P.R. D’Argenio and E. Brinksma. A calculus for timed automata (Extended abstract).
In B. Jonsson and J. Parrow, editors, Proceedings of the 4th International School and
Symposium on Formal Techniques in Real Time and Fault Tolerant Systems, Uppsala,
Sweden, volume 1135 of LNCS, pages 110–129. Springer, 1996.

P.R. D’Argenio, H. Hermanns, and J.-P. Katoen. On generative parallel composition.
Electronic Notes in Theoretical Computer Science, 22:25, 1999.

P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. A stochastic automata model and its
algebraic approach. In E. Brinksma and A. Nymeyer, editors, Proc. of 5th International
Workshop on Process Algebras and Performance Modeling, PAPM’97, Enschede, The
Netherlands, number 97-14 in Technical Report CTIT, pages 1–16. University of
Twente, 1997.

A. David and W. Yi. Modelling and analysis of a commercial field bus protocol. In
Proceedings of the 12th Euromicro Conference on Real Time Systems, pages 165–172. IEEE
Computer Society Press, 2000. ISBN 0-7695-0734-4.

G.N. Davrazos and N.T. Koussoulas. A review of stability results for switched and hy-
brid systems. In Proc. of 9th Mediterranean Conf. on Control and Automation, Dubrovnik,
Croatia, June 2001.

B. De Schutter and W.P.M.H. Heemels. Modeling and Control of Hybrid Systems. DISC,
September 2004. Lecture Notes of the DISC Course.

B. De Schutter and B. De Moor. The extended linear complementarity problem. Math.
Program., 71(3):289–325, 1995. ISSN 0025-5610.

171

i
i

i
i

i
i

i
i

B

B. De Schutter and T. J. J. van den Boom. Model predictive control for max-min-plus-
scaling systems – efficient implementation. In Proc. of the Sixth Int. Workshop on
Discrete Event Systems (WODES’02), page 343. IEEE Computer Society Press, 2002a.
ISBN 0-7695-1683-1.

B. De Schutter and T.J.J. van den Boom. Model predictive control for max-min-plus-
scaling systems. In Proc. of the 2001 American Control Conference (ACC’2001), pages
319–324, Arlington, Virginia, June 2001.

B. De Schutter and T.J.J. van den Boom. Model predictive control for max-min-
plus-scaling systems — Efficient implementation. In M. Silva, A. Giua, and J.M.
Colom, editors, Proceedings of the 6th International Workshop on Discrete Event Systems
(WODES’02), pages 343–348, Zaragoza, Spain, October 2002b.

R. DeCarlo, M. Branicky, S. Pettersson, and B. Lennartson. Perspectives and results on
the stability and stabilizability of hybrid systems. Proc. of IEEE, Special Issue on Hybrid
Systems, July 2000. URL citeseer.ist.psu.edu/decarlo00perspectives.html.

A. Deshpande, A. Göllü, and L. Semenzato. The SHIFT programming language and
run-time system for dynamic networks of hybrid automata. Technical Report UCB-
ITS-PRR-97-7, Dept. of Electrical Engineering and Computer Sciences, University of
California at Berkeley, Berkeley, CA94720, 1997.

D.Liberzon and A.S.Morse. Basic problems in stability and design of switched systems.
IEEE Control Systems Mag., 19(5):59–70, October 1999.

H. Eertink. Simulation Techniques for the Validation of LOTOS Specifications. PhD thesis,
University of Twente, 1994.

T. Ernst, S. Jähnichen, and M. Klose. The architecture of the Smile/M simulation
environment. In A. Sydow, editor, In proc. of 15th IMACS world congress on Scientific
Computation, Modelling and Applied Mathematics, volume 6, Berlin, 1997. Wissenschaft
und Technik Verlag.

G. Fabian. A Language and Simulator for Hybrid Systems. PhD thesis, Technical University
of Eindhoven (TU/e), 1999. URL http://se.wtb.tue.nl/~vanbeek/pub/phdfabia.
pdf.

G. Fabian, D. van Beck, and J. Rooda. Integration of the discrete and the continuous
behavior in the hybrid chi simulator. In Proc. 1998 Eur. Simulation Multiconf., pages
252–257, 1998.

A. Fehnker. Scheduling a steel plant with timed automata. In RTCSA’99. IEEE Com-
puter Society Press, 1999.

R.W. Floyd and R. Beigel. The Language of Machines, An Introduction to Computability
and Formal Languages. Computer Science Press, 1994.

P. Fritzson, P. Aronsson, P. Bunus, V. Engelson, L. Saldamli, H. Johanson, and
A. Karström. The open source Modelica project. In Proc. of 2nd International Modelica
Conference, pages 297–306, 2002.

172

citeseer.ist.psu.edu/decarlo00perspectives.html
http://se.wtb.tue.nl/~vanbeek/pub/phdfabia.pdf
http://se.wtb.tue.nl/~vanbeek/pub/phdfabia.pdf

i
i

i
i

i
i

i
i

B

P. Fritzson and V. Engelson. Modelica - a unified object-oriented language for system
modelling and simulation. In Proc. of the 12th European Conference on Object-Oriented
Programming (ECCOP’98), pages 67–90. Springer, 1998. ISBN 3-540-64737-6.

B. Gebremichael, T. Krilavičius, and Y.S. Usenko. A formal model of a car periphery
supervision system in U. In Proceedings of Workshop on Discrete Event Systems
(WODES’04), pages 433–438, Reims, France, September 2004.

R. L. Grossman and R. G. Larson. An algebraic approach to hybrid systems. Theor.
Comput. Sci., 138(1):101–112, 1995. ISSN 0304-3975.

R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors. Hybrid Systems, volume
736 of LNCS, 1993. Springer. ISBN 3-540-57318-6.

G. Hamon and J. Rushby. An operational semantics for S. In M. Wermelinger
and T. Margaria-Steffen, editors, FASE 2004, LNCS, pages 229–243, February 2004.

D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Pro-
gramming, 8(3):231–274, June 1987. URL http://citeseer.nj.nec.com/article/
harel87statecharts.html.

A. Hassibi, S.P. Boyd, and J.P. How. A class of Lyapunov functionals for analyzing
hybrid dynamical systems. In Proc. of American Control Conference, volume 4, pages
2455–2460, San Diego, CA, June 1999.

K. Havelund, K.G. Larsen, and A. Skou. Formal verification of a power controller
using the real-time model checker U. In 5th International AMAST Workshop on
Real-Time and Probabilistic Systems, 1999.

S. Hedlund. Computational methods for hybrid systems. Licentiate thesis ISRN
LUTFD2/TFRT--3225--SE, Department of Automatic Control, Lund Institute of Tech-
nology, Sweden, September 1999.

W.P. Maurice H. Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid
dynamical models. Automatica, 37(7):1085–1091, 2001.

W.P.M.H. Heemels. Linear Complementarity Systems: A Study in Hybrid Dynamics. PhD
thesis, Technical University of Eindhoven (TU/e), 1999.

W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland. Linear complementarity systems.
SIAM J. Appl. Math., 60(4):1234–1269, 2000. ISSN 0036-1399.

T.A. Henzinger. The theory of hybrid automata. In LICS 1996, pages 278–292. IEEE
Computer Society Press, July 1996.

T.A. Henzinger. M: A formal model for embedded components. In J. van
Leeuwen, O. Watanabe, M. Hagiya, P. D. Mosses, and T. Ito, editors, IFIP TCS,
volume 1872 of LNCS, pages 549–563, Sendai, Japan, August 2000. Springer. ISBN
3-540-67823-9.

T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HT: the next generation. In Proc.
of 16th IEEE Real-Time Systems Symp., pages 56–65. IEEE Computer Society Press,
December 1995. ISBN 0-8186-7337-0.

173

http://citeseer.nj.nec.com/article/harel87statecharts.html
http://citeseer.nj.nec.com/article/harel87statecharts.html

i
i

i
i

i
i

i
i

B

T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HT: a model checker for hybrid
systems. In O. Grumberg, editor, CAV’97, volume 1254 of LNCS, pages 460–463.
Springer, June 1997. ISBN 3-540-63166-6.

T.A. Henzinger, Z. Manna, and A. Pnueli. Towards refining temporal specifications
into hybrid systems. In Grossman et al. [1993], pages 60–67. ISBN 3-540-57318-6.

T.A. Henzinger, M. Minea, and V. Prabhu. Assume-guarantee reasoning for hierarchi-
cal hybrid systems. In Benedetto and Sangiovanni-Vincentelli [2001], pages 275–290.
ISBN 3-540-41866-0.

T.A. Henzinger and V. Rusu. Reachability verification for hybrid automata. In Hen-
zinger and Sastry [1998], pages 190–204. ISBN 3-540-64358-3. URL citeseer.nj.
nec.com/henzinger98reachability.html.

T.A. Henzinger and S. Sastry, editors. Hybrid Systems: Computation and Control, First
International Workshop, HSCC’98, Berkeley, California, USA, April 13-15, 1998, Proc.,
volume 1386 of LNCS, 1998. Springer. ISBN 3-540-64358-3.

H. Hermanns. Interactive Markov Chains And the Quest for Quantified Quality. Springer,
1998.

M. Heymann, F. Lin, and G. Meyer. Synthesis of minimally restrictive legal controllers
for a class of hybrid systems. In Antsaklis et al. [1997], pages 134–159. ISBN 3-540-
63358-8.

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677,
1978. ISSN 0001-0782.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., 1985.

A.T. Hofkamp. Reactive machine control, a simulation approach using χ. PhD thesis,
Technical University of Eindhoven (TU/e), 2001.

J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Pub.Comp., Inc., 2001.

R. Huuck, B. Lukoschus, and Y. Lakhnech. Verifying untimed and timed aspects of the
experimental batch plant. European Journal of Control: Verification of Hybrid Systems,
7(4):400–415, 2001.

ITU-T. Recommendation Z.120. Message Sequence Charts. Technical Report Z-120,
International Telecommunication Union – Standardization Sector, Genève, 2000.

B. Jacobs. Object-oriented hybrid systems of coalgebras plus monoid actions. Texts in
TCS. An EATCS Series, 239(1):41–95, 2000.

K.H. Johansson, J. Lygeros, S. Sastry, and M. Egerstedt. Simulation of Zeno hybrid
automata. In Proc. of 38th IEEE Conf. on Decision and Control, pages 3538–3543,
Phoenix, AZ, December 1999. IEEE Computer Society Press. ISBN 0-7803-5250-5.

174

citeseer.nj.nec.com/henzinger98reachability.html
citeseer.nj.nec.com/henzinger98reachability.html

i
i

i
i

i
i

i
i

B

M. Johansson and A. Rantzer. Computation of piecewise quadratic Lyapunov func-
tions for hybrid systems. IEEE Trans. Autom. Control, 43(4):555–559, 1998. URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=664157.

D.S. Jovanovic, B. Orlic, G.K. Liet, and J.F. Broenink. gCSP: A graphical tool for
designing CSP systems. In I.R. East, D. Duce, M. Green, J.M.R. Martin, and P.H.
Welch, editors, Communicating Process Architectures 2004, pages 233–252, 2004. ISBN
1-58603-458-8.

A.A. Julius. On Interconnection and Equivalence of Continuous and Discrete Systems: A
Behavioral Perspective. PhD thesis, Systems Signals and Control Group, University
of Twente, 2005.

A.A. Julius, S.N. Strubbe, and A.J. van der Schaft. Compositional modeling of hybrid
systems with hybrid behavioral automata. Submitted to the HSCC 2003., 2002.

J.-P. Katoen. Concepts, Algorithms and Tools for Model Checking. Universität Erlangen-
Nürnberg, 1999.

M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, June 2000. ISBN 0-7923-7744-3.

D.K. Kaynar, A. Chefter, L. Dean, S. Garland, N. Lynch, T.N. Win, and A. Ramirez-
Robredo. The IOA simulator. Technical Report MIT-LCS-TR-843, MIT Laboratory
for Computer Science, Cambridge, MA, July 2002.

T.-J. Koo, G. J. Pappas, and S. Sastry. Mode switching synthesis for reachability specifi-
cations. In Benedetto and Sangiovanni-Vincentelli [2001]. ISBN 3-540-41866-0. URL
citeseer.nj.nec.com/koo01mode.html.

M. Kourjanski and P. Varaiya. Stability of hybrid systems. In Alur et al.
[1996b], pages 413–423. ISBN 3-540-61155-X. URL citeseer.nj.nec.com/
kourjanski95stability.html.

X.D. Koutsoukos and P.J. Antsaklis. Design of stabilizing switching control laws
for discrete- and continuous-time linear systems using piecewise-linear Lyapunov
functions. Int. Journal Control, 75(12):932–945, 2002.

S. Kowalewski. Description of VHS case study 1 "Experimental Batch Plant". Draft.
University of Dortmund, Germany, July 1998.

S. Kowalewski and O. Stursberg. The batch evaporator: A benchmark example for
safety analysis of processing systems under logic control. In Proc. 4th Workshop
on Discrete Event Systems (WODES), pages 302–307. IEE, London, 1998. URL http:
//www-verimag.imag.fr/VHS/year1/cs11d.ps.

S. Kowalewski, O. Stursberg, and N. Bauer. An experimental batch plant as a test
case for the verification of hybrid systems. European Journal of Control: Verification of
Hybrid Systems, 7(4):366–381, 2001.

175

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=664157
citeseer.nj.nec.com/koo01mode.html
citeseer.nj.nec.com/kourjanski95stability.html
citeseer.nj.nec.com/kourjanski95stability.html
http://www-verimag.imag.fr/VHS/year1/cs11d.ps
http://www-verimag.imag.fr/VHS/year1/cs11d.ps

i
i

i
i

i
i

i
i

B

S. Kowalewski, O. Stursberg, M. Fritz, H. Graf, I.Hoffmann, J. Preußig, S. Simon,
H. Treseler, and M. Remelhe. A case study in tool-aided analysis of discretely
controlled continuous systems: the two tanks problem. In Antsaklis et al. [1999],
pages 163–187. ISBN 3-540-65643-X. URL citeseer.nj.nec.com/stursberg97case.
html.

T. Krilavičius and H. Schonenberg. Discrete simulation of behavioural hybrid process
calculus. In P. M. E. Bra and J. J. van Wijk, editors, IFM2005 Doctoral Symposium on
Integrated Formal Methods, pages 33–38, Eindhoven, Netherlands, November 2005.
Dept. of Math. and Comp. Science, Technical University of Eindhoven (TU/e).

B.H. Krogh and A. Chutinan. Hybrid systems: Modeling and supervisory control.
In P.M. Frank, editor, Advances in Control, LNCS. Springer, 1999. URL http://www.
contrib.andrew.cmu.edu/~ac4c/papers/ecc99.ps.

M. Kvasnica, P. Grieder, and M. Baotić. Multi-Parametric Toolbox (MPT), 2004. URL
http://control.ee.ethz.ch/~mpt/.

G. Labinaz, M.M. Bayoumi, and K. Rudie. Modeling and control of hybrid systems: A
survey. In IFAC 13th Triennial World Congress, San Francisco, CA, USA, 1996. URL
citeseer.nj.nec.com/labinaz96modeling.html.

L. Lamport. Hybrid Systems in TLA+. In Grossman et al. [1993], pages 77–102. ISBN
3-540-57318-6. URL citeseer.nj.nec.com/lamport93hybrid.html.

R. Langerak, J.W. Polderman, and T. Krilavičius. Stability analysis for hybrid automata
using conservative gains. In S.Engell, H. Guéguen, and J.Zayton, editors, Proceedings
of Conference on Analysis and Design of Hybrid Systems (ADHS’03), pages 377–382,
2003a.

R. Langerak, J.W. Polderman, and T. Krilavičius. Stability analysis for hybrid au-
tomata using optimal Lyapunov functions. In Proc. of Int. Conf. on Dynamical System
Modelling and Stability Investigation, page 420, Kyiv, Ukraine, May 2003b.

K. Larsen, M. Mikučionis, and B. Nielsen. Real-time system testing on-the-fly. In
K. Sere, M. Walden, and A. Karlsson, editors, The 15th Nordic Workshop on Pro-
gramming Theory (NWPT), Åbo Akademi University, Turku, Finland, October 2003.
Extended abstract.

E.A. Lee. Overview of the Ptolemy project. Technical Report Technical Memorandum
No. UCB/ERL M03/25, University of California, Berkeley, CA 94720, June 2004. URL
http://ptolemy.eecs.berkeley.edu/publications/papers/03/overview/.

E.A. Lee and H. Zheng. Operational semantics of hybrid systems. In Hybrid Sys-
tems: Computation and Control: 8th International Workshop, HSCC, LNCS, pages 25–53,
February 2005.

J.A. Levine. Sampling-based planning for hybrid systems. Technical report, Dept.
of Electrical Engineering and Computer Science, Case Western Reserve University,
September 2003. M.Sc. thesis.

176

citeseer.nj.nec.com/stursberg97case.html
citeseer.nj.nec.com/stursberg97case.html
http://www.contrib.andrew.cmu.edu/~ac4c/papers/ecc99.ps
http://www.contrib.andrew.cmu.edu/~ac4c/papers/ecc99.ps
http://control.ee.ethz.ch/~mpt/
citeseer.nj.nec.com/labinaz96modeling.html
citeseer.nj.nec.com/lamport93hybrid.html
http://ptolemy.eecs.berkeley.edu/publications/papers/03/overview/

i
i

i
i

i
i

i
i

B

M. Lindahl, P. Pettersson, and W. Yi. Formal Design and Analysis of a Gearbox
Controller. International Journal on Software Tools for Technology Transfer, 3(3):353–368,
2001.

P. Linz. An Introduction to Formal Languages and Automata. Jones and Bartlett pub.,
third edition, 2001.

J. Liu and E.A. Lee. A component-based approach to modeling and simulating mixed-
signal and hybrid systems. ACM Trans. Model. Comput. Simul., 12(4):343–368, 2002.
ISSN 1049-3301.

J. Liu, X. Liu, T. J. Koo, B. Sinopolia, S. Sastry, and E.A. Lee. Hierarchical hybrid
system simulation. In Proc. of 38th IEEE Conf. on Decision and Control, Phoenix, AZ,
December 1999. IEEE Computer Society Press.

J. Lygeros, D. Godbole, and S. Sastry. A design framework for hierarchical, hybrid
control. Technical report, Intelligent Machines and Robotic Laboratory, University
of California, Berkeley, 1997.

J. Lygeros, K. H. Johansson, S.N. Simić, J. Zhang, and S. S. Sastry. Dynamical properties
of hybrid automata. IEEE Trans. Autom. Control, 48(1):2–17, 2003.

J. Lygeros and S. Sastry. Hybrid systems: Modeling, analysis & control, ee291, 1999.
URL http://paleale.eecs.berkeley.edu/~lygeros/Teaching/ee291E.html.

J. Lygeros, C. Tomlin, and S. Sastry. On controller synthesis for nonlinear hybrid
systems. In Proc. of 37th IEEE Conf. on Decision and Control, pages 2101–2106, Tampa,
FL, December 1998. IEEE Computer Society Press.

J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability specifications for
hybrid systems. Automatica, 35(3), March 1999. URL citeseer.nj.nec.com/
lygeros99controller.html.

N.A. Lynch. Modelling and verification of automated transit systems, using timed
automata, invariants and simulations. In Alur et al. [1996b], pages 449–463. ISBN
3-540-61155-X.

N.A. Lynch and B.H. Krogh, editors. Proc. of Third Int. Workshop on Hybrid Systems:
Computation and Control, volume 1790 of LNCS, March 2000. Springer. ISBN 3-540-
67259-1.

N.A. Lynch, R. Segala, and F.W. Vaandrager. Hybrid I/O automata. Information and Com-
putation, 185(1):105–157, 2003. URL http://www.cs.kun.nl/ita/publications/
papers/fvaan/HIOA.html.

N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI Quarterly,
2(3):219–246, September 1989.

A. Mader, E. Brinksma, H. Wupper, and N. Bauer. Design of a PLC control program
for a batch plant - VHS case study 1. European Journal of Control: Verification of Hybrid
Systems, 7(4):416–439, 2001.

177

http://paleale.eecs.berkeley.edu/~lygeros/Teaching/ee291E.html
citeseer.nj.nec.com/lygeros99controller.html
citeseer.nj.nec.com/lygeros99controller.html
http://www.cs.kun.nl/ita/publications/papers/fvaan/HIOA.html
http://www.cs.kun.nl/ita/publications/papers/fvaan/HIOA.html

i
i

i
i

i
i

i
i

B

O. Maler and A. Pnueli, editors. Hybrid Systems: Computation and Control, 6th Inter-
national Workshop, HSCC 2003 Prague, Czech Republic, April 3-5, 2003, Proc., volume
2623 of LNCS, 2003. Springer. ISBN 3-540-00913-2.

A.N. Michel. Recent trends in the stability analysis of hybrid dynamical systems. IEEE
Trans. on Circuits and Systems - I. Fundamental theory and Applications, 46(1):120–134,
1999. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=739260.

C.A. Middelburg. Variable binding operators in transition system specifications. JLAP,
47(1):15–45, 2001.

D. Mignone, G. Ferrari-Trecate, and M. Morari. Stability and stabilization of piecewise
affine and hybrid systems: an LMI approach. In Proc. of 39th IEEE Conf. on Decision
and Control, pages 504–509, Sydney, Australia, December 2000. IEEE Computer
Society Press. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
912814.

R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer, 1980.

R. Milner. Communication and concurrency. Prentice-Hall, Inc., 1989. ISBN 0-13-115007-
3.

R. Milner. Communicating and Mobile Systems: The π-calculus. Cambridge University
Press, 1999. ISBN 0-521-65869-1.

Modelica - A Unified Object Oriented Language for Physical Systems Modeling: Language
Specification. Modelica Association, February 2005. URL http://www.modelica.
org/documents/ModelicaSpec22.pdf.

M. Morari, M. Baotic, and F. Borrelli. Hybrid systems modeling and control. European
Journal of Control, 9(2–3):177–189, 2003.

P. Mosterman. An overview of hybrid simulation phenomena and their support by
simulation packages. In Vaandrager and van Schuppen [1999], pages 165–177. ISBN
3-540-65734-7.

P.J. Mosterman and G. Biswas. A Hybrid Modeling and Simulation Methodology
for Dynamic Physical Systems. SIMULATION, 78(1):5–17, 2002. URL http://sim.
sagepub.com/cgi/content/abstract/78/1/5.

M. Mousavi. Structuring Structural Operational Semantics. PhD thesis, Technical Uni-
versity of Eindhoven (TU/e), 2005.

W. Mueller-Wittig, R. Jegathesea, S. Meehae, J. Quick, W. Haibinand, and Z. Yongmin.
Virtual factory - highly interactive visualisation for manufacturing. In In proc. of
the Winter Simulation Conference, volume 2, pages 1061–1064, December 2002. ISBN
0-7803-7614-5.

P. Niebert and S. Yovine. Computing efficient operation schemes for chemical plants
in multi-batch mode. European Journal of Control: Verification of Hybrid Systems, 7(4):
440–453, 2001.

178

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=739260
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=912814
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=912814
http://www.modelica.org/documents/ModelicaSpec22.pdf
http://www.modelica.org/documents/ModelicaSpec22.pdf
http://sim.sagepub.com/cgi/content/abstract/78/1/5
http://sim.sagepub.com/cgi/content/abstract/78/1/5

i
i

i
i

i
i

i
i

B

R. Nikoukhah and S. Steer. S - A Dynamic System Builder and Simulator User’s
Guide. INRIA, 1997.

M. Otter and F.E. Cellier. Software for Modeling and Simulating Control Systems, pages
415–428. CRC Press, Boca Raton, FL, 1995.

S. Owre and N. Shankar. Writing PVS proof strategies. In M. Archer, B. Di Vito,
and C. Muñoz, editors, Design and Application of Strategies/Tactics in Higher Order
Logics (STRATA 2003), number CP-2003-212448 in NASA Conference Publication,
pages 1–15, Hampton, VA, September 2003. NASA Langley Research Center. The
complete proccedings are available at http://research.nianet.org/fm-at-nia/
STRATA2003/.

S. Pettersson and B. Lennartson. Stability and robustness for hybrid systems. In
Proc. of 35th IEEE Conf. on Decision and Control, pages 1202–1207, Kobe, Japan,
December 1996. IEEE Computer Society Press. URL citeseer.ist.psu.edu/
pettersson96stability.html.

M. Philippe, V.-R.Claire, and G. Gérard. Optimal control of hybrid dynamical systems
with the maximum principle: Application to a non linear chemical process. In Proc.
of 39th IEEE Conf. on Decision and Control, Sydney, Australia, December 2000. IEEE
Computer Society Press.

G.D. Plotkin. A Structural Approach to Operational Semantics. Technical Re-
port DAIMI FN-19, University of Aarhus, 1981. URL citeseer.ist.psu.edu/
plotkin81structural.html.

G.D. Plotkin. The origins of structural operational semantics, 2003. URL citeseer.ist.
psu.edu/plotkin03origins.html. Journal of Functional and Logic Programming,
2003. forthcoming.

J.W. Polderman and J. C. Willems. Introduction to Mathematical Systems Theory: a
behavioral approach. Springer, 1998.

B. Potočnik, A. Bemporad, F.D. Torrisi, G. Mušič, and B. Zupančič. Hysdel mod-
eling and simulation of hybrid dynamical systems. Proc. of 4rd IMACS Symp. on
Mathematical Modelling (MATHMOD), 2003.

A. Puri and P. Varaiya. Verification of hybrid systems using abstractions. In Antsaklis
et al. [1995], pages 359–369. ISBN 3-540-60472-3. URL citeseer.nj.nec.com/
puri94verification.html.

M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM J. Res.
Develop., 3:115–125, 1959. URL http://www.research.ibm.com/journal/rd/032/
ibmrd0302C.pdf.

J. Raisch, E. Klein, S. O’Young, C. Meder, and A. Itigin. Approximating automata and
discrete control for continuous systems - two examples from process control. In
Antsaklis et al. [1999], pages 279–303. ISBN 3-540-65643-X.

179

http://research.nianet.org/fm-at-nia/STRATA2003/
http://research.nianet.org/fm-at-nia/STRATA2003/
citeseer.ist.psu.edu/pettersson96stability.html
citeseer.ist.psu.edu/pettersson96stability.html
citeseer.ist.psu.edu/plotkin81structural.html
citeseer.ist.psu.edu/plotkin81structural.html
citeseer.ist.psu.edu/plotkin03origins.html
citeseer.ist.psu.edu/plotkin03origins.html
citeseer.nj.nec.com/puri94verification.html
citeseer.nj.nec.com/puri94verification.html
http://www.research.ibm.com/journal/rd/032/ibmrd0302C.pdf
http://www.research.ibm.com/journal/rd/032/ibmrd0302C.pdf

i
i

i
i

i
i

i
i

B

M. Rönkkö and A. P. Ravn. Hybrid action systems. Technical Report TUCS TR-
110, Turku Centre for Computer Science, May 1997a. URL citeseer.nj.nec.com/
123739.html.

M. Rönkkö and A. P. Ravn. Switches and jumps in hybrid action systems. Technical
Report TUCS-TR-152, Turku Centre for Computer Science, 1997b. URL citeseer.
nj.nec.com/151567.html.

W. C. Rounds and H. Song. The Phi-calculus: A language for distributed control of
reconfigurable embedded systems. In Maler and Pnueli [2003], pages 435–449. ISBN
3-540-00913-2.

M. Rubensson. Stability Properties of Switched Dynamical Systems: A Linear Matrix
Inequality Approach. PhD thesis, Control and Automation Lab., Dept. of Signals and
Systems, Chalmers University of Technology, 2003.

E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on message sequence charts.
Comput. Netw. ISDN Syst., 28(12):1629–1641, 1996. ISSN 0169-7552.

T.C. Ruys. Towards Effective Model Checking. PhD thesis, University of Twente, 2001.

A. Samarin. Application de la programmation rèactive á la modélisation en physique,
2002.

R.R.H. Schiffelers, D.A. van Beek, K.L. Man, M.A. Reniers, and J.E. Rooda. Formal
semantics of hybrid Chi. In K. G. Larsen and P. Niebert, editors, FORMATS, volume
2791 of LNCS. Springer, 2003. ISBN 3-540-21671-5. URL http://se.wpa.wtb.tue.
nl/~vanbeek/pub/formats03.pdf.

M. H. Schonenberg. Discrete simulation of behavioural hybrid process algebra. Tech-
nical report, University of Twente, 2006. Draft of master thesis.

R. Schouten. Simulation of hybrid processes. Technical report, Technical University
of Eindhoven (TU/e), August 2005. Master thesis, to be defended.

B.I. Silva, K. Richeson, B.H. Krogh, and A. Chutinan. Modeling and verification of
hybrid dynamical system using CM. In ADPM 2000, September 2000.

S.N. Simić, K. H. Johansson, S. Sastry, and J. Lygeros. Towards a geometric theory of
hybrid systems. In Lynch and Krogh [2000], pages 421–436. ISBN 3-540-67259-1.
URL citeseer.nj.nec.com/simic00towards.html.

S.N. Simić, K.H.Johansson, J.Lygeros, and S. Sastry. Structural stability of hybrid
systems. In Proc. of European Control Conf. ’01, 2001.

E.D. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE Trans. Autom.
Control, 26(2):346–358, 1981.

S.Pettersson and B.Lennartson. Exponential stability of hybrid systems using piece-
wise quadratic Lyapunov functions resulting in LMIS. In Proc. of 4th IFAC World
Congress, volume J, pages 103–108, Beijing, China, July 1999. URL citeseer.nj.nec.
com/122773.html.

180

citeseer.nj.nec.com/123739.html
citeseer.nj.nec.com/123739.html
citeseer.nj.nec.com/151567.html
citeseer.nj.nec.com/151567.html
http://se.wpa.wtb.tue.nl/~vanbeek/pub/formats03.pdf
http://se.wpa.wtb.tue.nl/~vanbeek/pub/formats03.pdf
citeseer.nj.nec.com/simic00towards.html
citeseer.nj.nec.com/122773.html
citeseer.nj.nec.com/122773.html

i
i

i
i

i
i

i
i

B

Stateflow. Stateflow 6 data sheets, 2004. URL https://tagteamdbserver.mathworks.
com/ttserverroot/Download/20637_9397v05_SF.pdf.

S. Strubbe. Compositional Modelling of Stochastic Hybrid Systems. PhD thesis, University
of Twente, 2005.

S.N. Strubbe, A.A. Julius, and A.J. van der Schaft. Communicating piecewise deter-
ministic Markov processes. In S. Engell, H. Guéguen, and J. Zaytoon, editors, Proc.
IFAC Conf. Analysis and Design of Hybrid Systems (ADHS), St. Malo, France, 2003.
URL http://www.supelec-rennes.fr/adhs03/. Preprints.

J.H. Taylor. Tools for modeling and simulation of hybrid systems - a tutorial guide,
1999.

C. Tomlin and M. R. Greenstreet, editors. Hybrid Systems: Computation and Control, 5th
International Workshop, HSCC 2002, Stanford, CA, USA, March 25-27, 2002, Proceedings,
volume 2289 of LNCS, 2002. Springer. ISBN 3-540-43321-X.

C. Tomlin, J. Lygeros, and S. Sastry. A game theoretic approach to controller design
for hybrid systems. Proc. of IEEE, 88(7), July 2000.

C.J. Tomlin, G.J. Pappas, and S. Sastry. Conflict resolution for air traffic management:
A study in multi-agent hybrid systems. IEEE Trans. Autom. Control, 43(4):509–521,
April 1998. URL citeseer.nj.nec.com/article/tomlin98conflict.html.

J. Top and H. Akkermans. Tasks and ontologies in engineering modelling. Int. J.
Hum.-Comput. Stud., 41(4):585–617, 1994. ISSN 1071-5819.

F.D. Torrisi, A. Bemporad, G. Bertini, P. Herach, D. Jost, and D. Mignone. HYSDEL
2.0.5 - User Manual. Zurich, September 2002.

Bhave prot. B protototype. University of Twente, 2006. URL http://fmt.cs.
utwente.nl/tools/bhave.

Y.S. Usenko. Linearization in µCRL. PhD thesis, Technical University of Eindhoven
(TU/e), December 2002.

F. W. Vaandrager and J. H. van Schuppen, editors. Hybrid Systems: Computation and
Control, Second International Workshop, HSCC’99, Berg en Dal, The Netherlands, March
29-31, 1999, Proc., volume 1569 of LNCS, 1999. Springer. ISBN 3-540-65734-7.

J. van Amerongen and P. Breedveld. Modelling of physical systems for the design and
control of mechatronic systems. Annual Reviews in Control, 27(1):87–117, 2003.

D. A. van Beek and J. E. Rooda. Languages and applications in hybrid modelling and
simulation: positioning of Chi. Control Engineering Practice, 8(1):81–91, 2000.

D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R.R.H. Schiffelers. Syntax
and consistent equation semantics of hybrid chi. Report CS-Report 04-37, Technical
University of Eindhoven (TU/e), Eindhoven, November 2004.

181

https://tagteamdbserver.mathworks.com/ttserverroot/Download/20637_9397v05_SF.pdf
https://tagteamdbserver.mathworks.com/ttserverroot/Download/20637_9397v05_SF.pdf
http://www.supelec-rennes.fr/adhs03/
citeseer.nj.nec.com/article/tomlin98conflict.html
http://fmt.cs.utwente.nl/tools/bhave
http://fmt.cs.utwente.nl/tools/bhave

i
i

i
i

i
i

i
i

B

P.C.W. van den Brand, M.A. Reniers, and P.J.L. Cuijpers. Linearization of hybrid
processes. JLAP, Special issue on Process Theory for Hybrid Systems, 2005. Accepted for
publication.

A.J. van der Schaft. Bisimulation of dynamical systems. In Alur and Pappas [2004],
pages 555–569. ISBN 3-540-21259-0.

A.J. van der Schaft and J. Schumacher. Complementarity modeling of hybrid systems.
IEEE Trans. Autom. Control, 43(4):483–490, 1998.

A.J. van der Schaft and J.M. Schumacher. An Introduction to Hybrid Dynamical Systems,
volume 251 of LNCIS. Springer, London, 2000.

P. van Eijk. Software tools for the specification language LOTOS. PhD thesis, University
of Twente, 1988.

A.E. van Putten. Behavioural hybrid process calculus parser and translator to Modelica.
Technical report, University of Twente, 2006. Draft of master thesis.

J.J. Vereijken. A process algebra for hybrid systems. In The Second European Workshop
on Real-Time and Hybrid Systems, Grenoble, France, May 1995.

M. Žefran and J.W. Burdick. Stabilization of systems with changing dynamics. In IEEE
Trans. Autom. Control, pages 400–415, August 1998. URL citeseer.nj.nec.com/
zefran98stabilization.html.

J.L. Willems. Stability Theory of Dynamical Systems. Thomas Nelson and Sons LTD.,
1970.

R. Williams and R. Newell. Hybrid analysis as a batch process controller design tool.
In Proc. of Control’97, Sydney, Australia, October 1997.

H. Ye, A.N. Michel, and L. Hou. Stability theory for hybrid dynamical systems. IEEE
Trans. Autom. Control, 43(4):461–474, April 1998.

B.P. Zeigler, H. Praenhofer, and T.G. Kim. Theory of Modelling and Simulation. Academic
Press, second edition, 2000. ISBN 0-12-778455-1.

Q. Zhao, B.H. Krogh, and P. Hubbard. Generating test inputs for embedded control
systems. IEEE Control Systems Magazine, 23(4):49–57, August 2003.

182

citeseer.nj.nec.com/zefran98stabilization.html
citeseer.nj.nec.com/zefran98stabilization.html

i
i

i
i

i
i

i
i

Index

Symbols∑
. see choice

χ simulator . 46, 131
0 . see deadlock⊕

. see superposition
τ action see silent action
20-sim . 48, 129

A

ACP . 43
ACPsrt

hs . . . see process algebra for hybrid
systems

action . 38, 43, 75, 78
discrete . 39
enabled . 39
external . 39
input . 40
internal 39, see silent action
output . 40
receive . 45
send . 45

action prefix . 77, 79
parametrisation 85

action-prefix . 41
active environment 46
AHS see mobile vehicles
Air Traffic Management see mobile

vehicles
algebraic constraints 47
alternative composition see choice
AnyLogic . 129
architecture . 124
ASCII . 103, 125
ATM see mobile vehicles
Automated Highway System see mobile

vehicles
Autonomous Flight Vehicles . see mobile

vehicles

autonomous system 54
Autonomous Underwater Vehicles

see mobile vehicles
axiomatisation . 41

B

batch plant control 18
behaviour . 38, 67
behavioural approach 67

behavioural equations 67
dynamical system. 67
dynamical system with latent

variables . 67
mathematical model 67

Behavioural Hybrid Process Calculus
28, 65–92

discrete simulator 126, 161
parser . 125, 126

B 161, 163, 164, 166
B prototype 161
bisimilarity . 77

see also bisimulation
bisimulation 42, 43, 84, 95, 147

hybrid strong 77, 84, 95, 147
robust . 43, 95
stateless . 43, 95

block diagrams 118, 131
bond graphs.28, 47–48, 98, 118

bond. 48
conversion . 48
dissipation . 48
distribution . 48
effort . 48
element . 47
flow . 48
generalised displacement 48
generalised momentum 48
gyrator . 48
junction . 48

183

i
i

i
i

i
i

i
i

bouncing ball flow clause

source . 48
storage element 48
transformer . 48

bouncing ball . 12, 86

C

causal stroke . 48
channel . 45
C28, 47, 95, 130

toolkit . 47
chattering . 27
CheckMate. .130
choice . . . 41, 42, 44–46, 77, 81, 84, 90, 95
class . 49
closed system . . see autonomous system
code generation . 5
code snippet . 126
Common Lyapunov function 53
communication function 44
complementarity . 34
complementarity systems 28, 34–35

extended linear 35
linear . 35

complementarity variables 35
complementary vectors

see complementarity
component

atomic continuous 46
atomic discrete . 46

concatenation 70, 80–81
concatenation closure 39
congruence 43, 84, 95, 147
connector . 49
conservative gain see gain
consistent signal flow 78, 79, 83, 145

see also . signal
constitutive hybrid process 98
continuous dynamics.29

linear . 26, 29, 60
non-linear . 26, 29

continuous switching 141
continuous update 47
continuous variable 38
continuous-time dynamics 101
contractive cycle 56, 59, 141
control actions . 26

controller . 5
controller generation 5
controller synthesis see controller

generation

D

d/dt . 37, 131
DASSL. 114
deadlock . 41, 77
delay . 45, 86
density . 76, 82
determinism see nondeterminism,

see non-determinism
DHA see discrete hybrid automaton
differential constraints.47
discrete hybrid automaton 131
discrete state . 37
discrete update . 47
dry friction . 45, 88
Dymola . 126, 132
dynamical system 67

E

ELCS see complementarity systems
equational theory. . . .see axiomatisation
equilibrium state . 54
error-trace . 100
event . 27, see action
event detection. .101
event handling . 101
event identifier . 119
event iteration . 27
event trace . 119, 120
event-state trace 119, 120
execution . 47
exit conditions . 74
expansion law 84–85, 108, 153

F

finite automaton . 58
Flight Vehicles Management . see mobile

vehicles
flow clause see flow conditions

184

i
i

i
i

i
i

i
i

flow conditions Lyapunov function

flow conditions . 43
fluid level . 15
forward Euler . 114
FVMS see mobile vehicles

G

gain . 61, 63, 142
calculation . 62

gain automaton . 57
construction of . 57

gas burner . 14
graph . 118–120
guard . 37, 55, 60, 86

H

HBA see hybrid behavioural automaton
hiding . 47, 78, 82–83

see also encapsulation
of components . 47
of variables . 47

hierarchical model 46, 47
hierarchical physical modelling 49
hierarchical specificationsee hierarchical

model
HIOA. see hybrid input/output

automaton
Hybrid χ 28, 45–46, 95, 128, 131

simulator.see χ simulator
hybrid automata . . . 11, 28, 36–37, 39, 96,

131
linear continuous hyperplane . . 60, 61

hybrid behavioural automaton 28,
37–38, 97

hybrid execution . 38
Hybrid I/O automaton 39
hybrid input/output automaton 28,

38–40, 95
hybrid systems . 2

classification of 25–30
grouping of 30–32
hybrid dynamical systems 30, 93
modelling . 3
simulation see simulation
stability see stability

testing . 6
hybrid trace . 54
hybrid transition system 43, 75
HyPA . 28, 43–45, 95

linearization . 45
simulation . 45

hyperplane 60–63, 131
HYSDEL . 34, 131
HyTech . 37, 131
HyVisual . 131

I

idle . 85
initial conditions 101
initial mode see initial conditions
initial process see initial conditions
initial signal values 101
initial state . 40
initialisation . 101
interconnection set 78
interface . 47
interleaving 41, 42, 82, 84, 95
invariant . 37, 47, 60

J

jump
autonomous see reset
controlled see reset

L

label . see action, 40
transition . 37

latent variables . 67
LCS see complementarity systems
linear multi-step 114
linearization . 104
locally controlled . 39
location . 37
LOTOS . 43, 44
Lyapunov function 61, 63

optimising choice of 63, 142

185

i
i

i
i

i
i

i
i

M renaming

M

M114, 126, 158, 159, 162–164
M 28, 46–47, 95
MathModelica . 132
M . 34, 131
max-min-plus-scaling systems28, 35–36
message sequence charts 119, 120
message sequence plots 120
mixed logical dynamical systems. . . .28,

33–34, 94, 116
continuous time 34
discrete time . 33

MLD see mixed logical dynamical
systems

MMPS see max-min-plus-scaling
systems

mobile robot see mobile vehicles
mobile vehicles 21–22
model layers

functional . 118
mathematical . 118
physical . 118
technical . 118

ModelicaTM 28, 49, 98, 126, 127, 132
MSC see message sequence charts
MSCplots . . see message sequence plots
MSP.see message sequence plots
Multi-Parametric Toolbox 34, 131
Multiple Lyapunov functions 53

N

non-blocking statement 102
non-causal . 49
non-contractive cycle see contractive

cycle
non-determinism.29, 115–117

continuous systems 115
discrete systems 115
hybrid systems 115
statistical methods 116
trajectory prefix 115
under-specification 116

nondeterminism 26, 38, 41, 47
scheduler . 117
weak time-determinism 45

normal form . 106

O

object diagrams . 118
Open Modelica . 132
outcomes . 67

P

panth . 150
parallel composition. . .41, 42, 44–47, 78,

81–82, 84, 95
Φ-calculus . 28, 46, 95
piecewise affine systems . . 28, 32–33, 94,

116
continuous time 32
discrete . 32

plant . 5
plot . see also graph
prefix . 72

partial . 73
strict . 72
strict partial . 73

prefix closure . 39
process . 40, 41

identifier .83
process algebra .40
process algebra for hybrid systems . . 28,

42–43, 95
process calculus see process algebra
projection . 70

extended. .70
Ptolemy. .131
PWA see piecewise affine systems

R

railroad gate control 17
re-initialisation 43, 101

consistent . 114
re-initialisation clause

see re-initialisation
recursion . 41, 78, 83
regular expression 58
renaming 41, 46, 78, 83

186

i
i

i
i

i
i

i
i

renaming function Statecharts

renaming function 40, 83
reset . 27, 37, 55, 60

autonomous . 26
controlled. 26

Runge-Kutta . 114

S

sampling . 29
continuous . 26, 29
regular . 26, 29

S . 132
S . 132
scope restriction see hiding
Sea Traffic Management see mobile

vehicles
serial composition see choice
set of actions . 40
set of states. .40
set of trajectories

extended. .70
set of trajectories prefixes 72

closure . 72
Shift . 132
signal

domain . 68
emission . 45
space . 68

signal space . 75
see also .state space
manifest . 67

silent action 75, 79, 83
simulation . 5, 103

analysis tool . 100
BHPC . 102
continuous systems 100
continuous-time behaviour 111
discrete events 110
discrete systems 100
event tracking 101
event tracking algorithms 101
hybrid systems 101
mode . 128
model development99
process algebras 103
results analysis 127
smoothing method.101

systems analysis 99
time-stepping . 101
Zeno behavioursee also Zeno

simulation experiment 128
simulation languages 31, 98
simulation mode

automatic . 128
batch . 129
interactive . 128

simulation model 127
simulation program 128
simulator

compiler . 126
compiler to executable 126
control centre . 126
editor . 125
experiment description 126
library . 126
library of executable routines 126
optimisation . 126
solver. .126
translator . 126
translator to executable 126
visualisation . 126

S 123, 124, 131, 132
Smile/M. .127
smooth model see system
solver

ODE/DAE . 114
SOSsee structural operational semantics
specification . 26
stability . 54

of dynamical systems 54
of equilibrium state 54
of hybrid automaton 55, 141
of hybrid automaton, multiple

equilibria .55
of hybrid systems 54–55

stable . see stability
stable location 55, 61, 141
start state . see state
state .39, 40, 75

continuous . 101
initial 37, 39, 55, 60

state space 37, 43, 75
continuous. .37

Statecharts . 46, 47

187

i
i

i
i

i
i

i
i

S Zeno

S 123, 130, 132
steam boiler . 44
stimulus

external . 27
internal . 27

STMS. see mobile vehicles
stop . see deadlock
structural operational semantics 41, 103
suffix closure . 39
summation operator see choice,

see choice
superposition . 90–91
SUT see system under test
switch

autonomous . 26
controlled. 26

switching . see switch
symbolic gain . 56
synchronisation set 40, 78
system

smooth . 101
system under test . 6

T

TEDHS. see threshold event driven
hybrid systems

termination . 43
theorem proving . 5
thermostat 13, 42, 87, 97
threshold event driven hybrid systems

131
time-shift . 71
timed automaton.132
trajectory 38, 39, 68–75

composition of . 73
composition of sets of 74
concatenation see concatenation
continuation . 72
duration of . 69
empty trajectory 69
partially equal . 73
qualifier.68, 69, 78
set of . 74, 75
set of continuations 72
set of qualifier . 69
set of qualifiers 69

trajectory prefix 77, 79–80, 90
trajectory variable 77, 80
transition 37, 38, 43, 55, 75

discrete . 38, 43
signal . 43

transition relation 40
continuous-time 75
discrete . 75

transition system 40, 41
labelled . 40, 75

transition systems
rooted . 40

U

universum . 67
unstable see stability
U . 120, 132

V

value passing . 85
variable space

latent . 67
variables

external . 39
input . 38, 39
internal . 39
output .38, 39

verification. .4–5
visualisation . 120

3D . 118, 124
animation . 118
component . 123
models . 117
results . 118

W

water level see fluid level
well-posed. .30, 33
well-posedness . 116

Z

Zeno. .12, 13, 60, 124

188

i
i

i
i

i
i

i
i

Summary

Computer controlled systems are almost omnipresent nowadays. We expect such
systems to function properly at any time we need them. The malfunctioning of home
electronics just irritates us, but glitches in a car, power plant or medical support
system may threaten life, and faults in nuclear missile control facility may bring the
end to civilisation. Such ubiquity of computer based control puts very high reliability
requirements on such systems.

Hybrid systems combine continuous real-time behaviour and discrete events. Re-
search in hybrid systems aims at providing means for reliable design and production
of hybrid systems. In this thesis we explore the world of hybrid systems. We acknowl-
edge relevance and complexity of hybrid systems research, and emphasise several
different research topics: modelling, analysis, testing and deployment of hybrid sys-
tems.

We illustrate hybrid systems by presenting a collection of examples that reflect
hybrid phenomena, its variety and occurrence in different applications. Of course,
the list is not exhaustive, because only illustrative examples were chosen. However,
it represents the diversity of hybrid systems sufficiently well to reveal the size and
complexity of problems, and the broadness of the application area.

We survey several major formalisms for modelling and analysis of hybrid systems.
We overview an existing classification of hybrid systems, and propose a generalised
classification scheme for diverse frameworks. Moreover, we classify the surveyed
formalisms according to the proposed scheme.

We propose a technique for stability estimation for a certain class of hybrid au-
tomata. It combines ideas from computer science and control theory, and is based
on cycles detection and conservative gains estimation. We borrow the well-known
algorithm for transforming a finite automaton into an equivalent regular expression
for cycles detection from computer science. From control theory we take the idea of
conservative gains and use them to estimate stability of cycles.

We introduce Behavioural Hybrid Process Calculus (BHPC), a formalism for mod-
elling and analysis of hybrid systems. It combines process algebraic techniques and
the behavioural approach [Polderman and Willems, 1998] to dynamical systems. We
take an attempt to advance fusion of computer science and control theory in hybrid sys-
tems research. BHPC is based on two fundamental notions of actions and trajectories
that describe discrete and continuous evolution of dynamical systems, respectively.
At a higher abstraction level these two types of behaviour are treated uniformly, i.e.,
as normal elements of process algebra. Their behaviour is defined using structural
operational semantics (SOS) rules [Plotkin, 1981, 2003]. Moreover, the rules already
respect the differences between trajectory prefixes and action prefixes, based on our
intuition on how such processes should behave. For example, in parallel composition

189

i
i

i
i

i
i

i
i

S

trajectory prefixes are always required to synchronise, while for action prefixes inter-
leaving semantics is adopted. Furthermore, we define a hybrid strong bisimulation
relation for BHPC and prove that it is a congruence. It is one of the most important
properties to attain well defined compositionality. Such a property allows to inter-
change bisimilar processes in any process algebraic expression. In other words, it
allows to refine process, change their internal representation, and interchange them
without any losses as long as they manifest the same behaviour.

We propose a technique for simulation of BHPC. We devise a simulation algorithm
for a subset of BHPC operators and test some of the proposed techniques in the
B prototype. The proposed simulation algorithm defines one of the possible
ways to simulate Behavioural Hybrid Process Calculus. Moreover, we survey the
major problems in simulation of hybrid systems in the light of BHPC and in a more
general layout. For some of the issues we propose solutions, for the remaining we
discuss potential ways to tackle the problems.

190

i
i

i
i

i
i

i
i

Samenvatting

Computergestuurde systemen zijn tegenwoordig bijna overal aanwezig. We verwach-
ten dat zulke systemen op ieder gewenst moment correct functioneren. Het disfunc-
tioneren van electronica thuis ergert ons alleen maar, maar storingen in een auto,
kerncentrale of medisch systeem kunnen levensbedreigend zijn. En als er iets mis-
gaat in een controle centrum voor kernwapens, kan dat een eind maken aan de hele
beschaving. Het alomtegenwoordig zijn van computergestuurdheid stelt hoge eisen
aan de betrouwbaarheid van zulke systemen.

Hybride systemen combineren real-time gedrag met discrete gebeurtenissen. On-
derzoek naar hybride systemen tracht middelen te vinden voor het betrouwbaar ont-
werpen en produceren van hybride systemen. In dit proefschrift onderzoeken we de
wereld van hybride systemen. We erkennen de relevantie en complexiteit van onder-
zoek naar hybride systemen en benadrukken enkele verschillende onderwerpen van
onderzoek: modelleren, analyse, testen en toepassen van hybride systemen.

We illustreren hybride systemen aan de hand van een verzameling voorbeelden,
die hybride fenomenen zichtbaar maken, alsook zijn variëteit en aanwezigheid in
verschillende applicaties. Natuurlijk is deze lijst niet volledig, omdat slechts illus-
tratieve voorbeelden werden gekozen. De lijst representeert echter genoeg van de
diversiteit van hybride systemen, om de omvang en complexiteit van de problemen
en de uitgebreidheid van het toepassingsgebied te laten zien.

We onderzoeken enkele belangrijke formele formalismen voor de modellering en
analyse van hybride systemen. We geven een overzicht van een bestaande classificatie
van hybride systemen en stellen een algemeen classificatieschema voor verschillende
frame works voor. Verder classificeren we de onderzochte formalismen volgens het
voorgestelde schema.

We introduceren een techniek voor het schatten van de stabiliteit voor een bepaalde
klasse van hybride automaten. Deze techniek combineert ideeën van de informatica en
de besturingstheorie en is gebaseerd op het detecteren van cykels en een conservatieve
schatting van de toestandsvergroting. We lenen het bekende algoritme om een eindige
automaat in een equivalente reguliere expressie voor cykel detectie om te zetten van
de informatica. Van de besturingstheorie nemen we het idee over van conservatieve
toestandsvergroting en we gebruiken dit om de stabiliteit van cykels te schatten.

We introduceren de Behavioural Hybrid Process Calculus (BHPC), een formalisme
voor modellering en analyse van hybride systemen. Dit combineert technieken uit
de procesalgebra en de behavioural approach [Polderman and Willems, 1998] van
dynamische systemen. We doen een poging om het combineren van de informatica
en de besturingstheorie in onderzoek naar hybride systemen te verbeteren. BHPC
is gebaseerd op twee fundamentele begrippen van actions en trajectories die respec-
tievelijk discrete en continue evolutie van dynamische systemen beschrijven. Op hoger

191

i
i

i
i

i
i

i
i

S

abstractieniveau worden deze twee soorten gedrag uniform behandeld, als normale el-
ementen van de procesalgebra. Hun gedrag wordt bepaald door gebruik te maken van
structural operational semantics (SOS) regels [Plotkin, 1981, 2003]. Verder respecteren
de regels al de verschillen tussen trajectory prefixes en action prefixes, gebaseerd op
onze intuïtie over hoe dergelijke processen zich zouden moeten gedragen. Bijvoor-
beeld, in parallelle compositie moeten de trajectory prefixes altijd synchroniseren,
terwijl voor action prefixes interleaving semantics wordt gebruikt. Verder definiëren
we een hybride sterke bisimulatierelatie voor BHPC en bewijzen dat het een con-
gruentie is. Het is een van de belangrijkste eigenschappen om een goed bepaalde
compositionaliteit te bereiken. Zo’n eigenschap staat het toe om bisimilaire processen
om te wisselen binnen elke expressie in de procesalgebra. Met andere woorden, het
staat toe om processen te verfijnen, hun interne representatie te veranderen, en hen
om te wisselen zonder enig verlies, zolang ze hetzelfde gedrag vertonen.

We introduceren een techniek voor simulatie van BHPC. We construeren een
simulatiealgoritme voor een deelverzameling van BHPC-operatoren en testen enkele
voorgestelde technieken in het B prototype. Het voorgestelde simulatiealgoritme
bepaalt een van de mogelijke manieren om de Behavioural Hybrid Process Calculus
te simuleren. Verder onderzoeken we de belangrijkste problemen in simulatie van
hybride systemen in het licht van BHPC en in een meer algemene opzet. Voor enkele
kwesties stellen we oplossingen voor, voor de overgebleven vraagstukken bespreken
we mogelijke manieren om de problemen aan te pakken.

192

i
i

i
i

i
i

i
i

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Process Algebra.
Faculty of Mathematics and Computing Science,
TUE. 1996-01

A.M. Geerling. Transformational Development of
Data-Parallel Algorithms. Faculty of Mathematics
and Computer Science, KUN. 1996-02

P.M. Achten. Interactive Functional Programs: Mod-
els, Methods, and Implementation. Faculty of Mathe-
matics and Computer Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local Search. Faculty of
Mathematics and Computing Science, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation of Func-
tional Languages on Parallel Machines with Distrib.
Memory. Faculty of Mathematics and Computer
Science, KUN. 1996-05

D. Alstein. Distributed Algorithms for Hard Real-Time
Systems. Faculty of Mathematics and Computing
Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchronization, and
Fault-Tolerance. Faculty of Mathematics and Com-
puter Science, UvA. 1996-07

H. Doornbos. Reductivity Arguments and Program
Construction. Faculty of Mathematics and Comput-
ing Science, TUE. 1996-08

D. Turi. Functorial Operational Semantics and its De-
notational Dual. Faculty of Mathematics and Com-
puter Science, VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake Circuits. Fac-
ulty of Mathematics and Computing Science, TUE.
1996-10

N.W.A. Arends. A Systems Engineering Specification
Formalism. Faculty of Mechanical Engineering, TUE.
1996-11

P. Severi de Santiago. Normalisation in Lambda Cal-
culus and its Relation to Type Inference. Faculty of
Mathematics and Computing Science, TUE. 1996-
12

D.R. Dams. Abstract Interpretation and Partition Re-
finement for Model Checking. Faculty of Mathematics
and Computing Science, TUE. 1996-13

M.M. Bonsangue. Topological Dualities in Seman-
tics. Faculty of Mathematics and Computer Science,
VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of Small
Treewidth. Faculty of Mathematics and Computer
Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transformations in
Context. Faculty of Computer Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data Types. Fac-
ulty of Mathematics and Computing Science, TUE.
1997-03

T.D.L. Laan. The Evolution of Type Theory in Logic
and Mathematics. Faculty of Mathematics and Com-
puting Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Explicit Sub-
stitution. Faculty of Mathematics and Computing
Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra. Fac-
ulty of Mathematics and Computing Science, TUE.
1997-06

F.A.M. van den Beuken. A Functional Approach to
Syntax and Typing. Faculty of Mathematics and In-
formatics, KUN. 1997-07

A.W. Heerink. Ins and Outs in Refusal Testing. Fac-
ulty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-Event Sim-
ulator for Systems Engineering. Faculty of Mechanical
Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for Multi-
processor Computation. Faculty of Mathematics and
Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous Low-Power
80C51 Microcontroller. Faculty of Mathematics and
Computing Science, TUE. 1998-04

A.A. Basten. In Terms of Nets: System Design with
Petri Nets and Process Algebra. Faculty of Mathemat-
ics and Computing Science, TUE. 1998-05

E. Voermans. Inductive Datatypes with Laws and Sub-
typing – A Relational Model. Faculty of Mathematics
and Computing Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic Unification-based
Parsing. Faculty of Computer Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Simulation of Surface
Processes. Faculty of Mathematics and Computing
Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolutionary
Search. Faculty of Mathematics and Natural Sci-
ences, UL. 1999-04

E.I. Barakova. Learning Reliability: a Study on Indeci-
siveness in Sample Selection. Faculty of Mathematics
and Natural Sciences, RUG. 1999-05

M.P. Bodlaender. Scheduler Optimization in Real-
Time Distributed Databases. Faculty of Mathematics
and Computing Science, TUE. 1999-06

i
i

i
i

i
i

i
i

M.A. Reniers. Message Sequence Chart: Syntax and
Semantics. Faculty of Mathematics and Computing
Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satisfiability
problems. Faculty of Mathematics and Computing
Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols with
Formal Methods. Faculty of Computer Science, UT.
1999-09

P.R. D’Argenio. Algebras and Automata for Timed and
Stochastic Systems. Faculty of Computer Science, UT.
1999-10

G. Fábián. A Language and Simulator for Hybrid
Systems. Faculty of Mechanical Engineering, TUE.
1999-11

J. Zwanenburg. Object-Oriented Concepts and Proof
Rules. Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural Predic-
tion System. Faculty of Mathematics and Natural
Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementation of At-
tribute Grammars. Faculty of Mathematics and Com-
puter Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Parallel
Program Construction. Faculty of Mathematics and
Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Statecraft in the
Dutch Republic. Faculty of Mathematics and Com-
puter Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified approach
to the verification of distributed algorithms. Faculty of
Mathematics and Computer Science, UU. 2000-02

W. Mallon. Theories and Tools for the Design of
Delay-Insensitive Communicating Processes. Faculty
of Mathematics and Natural Sciences, RUG. 2000-
03

W.O.D. Griffioen. Studies in Computer Aided Verifi-
cation of Protocols. Faculty of Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the MathSpad
Editor. Faculty of Mathematics and Computing Sci-
ence, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and Packag-
ing Plant. Faculty of Mechanical Engineering, TUE.
2000-06

M. Franssen. Cocktail: A Tool for Deriving Correct
Programs. Faculty of Mathematics and Computing
Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging Hetero-
geneous Applications. Faculty of Natural Sciences,
Mathematics and Computer Science, UvA. 2000-08

E. Saaman. Another Formal Specification Language.
Faculty of Mathematics and Natural Sciences, RUG.
2000-10

M. Jelasity. The Shape of Evolutionary Search Discov-
ering and Representing Search Space Structure. Faculty
of Mathematics and Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a computational
approach to knowledge, observation and communication.
Faculty of Mathematics and Computing Science,
TU/e. 2001-02

M. Huisman. Reasoning about Java programs in higher
order logic using PVS and Isabelle. Faculty of Science,
KUN. 2001-03

I.M.M.J. Reymen. Improving Design Processes
through Structured Reflection. Faculty of Mathemat-
ics and Computing Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting: syntax and se-
mantics. Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2001-05

R. van Liere. Studies in Interactive Visualization. Fac-
ulty of Natural Sciences, Mathematics and Com-
puter Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and Testing of
Event Sequences. Faculty of Mathematics and Com-
puting Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching Classes. Fac-
ulty of Mathematics and Natural Sciences, UL. 2001-
08

M.H. Lamers. Neural Networks for Analysis of Data in
Environmental Epidemiology: A Case-study into Acute
Effects of Air Pollution Episodes. Faculty of Mathe-
matics and Natural Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model Checking. Faculty
of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of concurrency
control and recovery protocols. Faculty of Mathemat-
ics and Computing Science, TU/e. 2001-11

M.D. Oostdijk. Generation and presentation of formal
mathematical documents. Faculty of Mathematics and
Computing Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine control: A simula-
tion approach using χ. Faculty of Mechanical Engi-
neering, TU/e. 2001-13

D. Bošnački. Enhancing state space reduction tech-
niques for model checking. Faculty of Mathematics
and Computing Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks for Intelligent Data
Analysis: theoretical and experimental aspects. Faculty
of Mathematics and Natural Sciences, UL. 2002-01

i
i

i
i

i
i

i
i

V. Bos and J.J.T. Kleijn. Formal Specification and
Analysis of Industrial Systems. Faculty of Mathemat-
ics and Computer Science and Faculty of Mechani-
cal Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding Legacy Soft-
ware Systems. Faculty of Natural Sciences, Mathe-
matics and Computer Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in Process Algebra.
Faculty of Natural Sciences, Mathematics, and Com-
puter Science, UvA. 2002-04

R.J. Willemen. School Timetable Construction: Algo-
rithms and Complexity. Faculty of Mathematics and
Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Verification of Prob-
abilistic, Real-time and Parametric Systems. Faculty of
Science, Mathematics and Computer Science, KUN.
2002-06

N. van Vugt. Models of Molecular Computing. Faculty
of Mathematics and Natural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guiding and Cost-
Optimality in Model Checking of Timed and Hybrid Sys-
tems. Faculty of Science, Mathematics and Com-
puter Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin Packing. Fac-
ulty of Mathematics and Natural Sciences, UL. 2002-
09

D. Tauritz. Adaptive Information Filtering: Concepts
and Algorithms. Faculty of Mathematics and Natural
Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics for Process
Algebra. Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions of Semantical
Models. Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2002-12

L. Moonen. Exploring Software Systems. Faculty of
Natural Sciences, Mathematics, and Computer Sci-
ence, UvA. 2002-13

J.I. van Hemert. Applying Evolutionary Computation
to Constraint Satisfaction and Data Mining. Faculty of
Mathematics and Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra. Faculty of
Mathematics and Computer Science, TU/e. 2002-15

Y.S. Usenko. Linearization inµCRL. Faculty of Math-
ematics and Computer Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage for Video on
Demand. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused: Techniques
for component composition and construction. Faculty

of Natural Sciences, Mathematics, and Computer
Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal over Typed Source
Code Representations. Faculty of Natural Sciences,
Mathematics, and Computer Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks. Faculty of
Mathematics and Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and Verification in Pro-
cess Algebras with Data and Timing. Faculty of Math-
ematics and Computer Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of Catalytic
Reactions. Faculty of Mathematics and Computer
Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of Tertiary Stor-
age. Faculty of Electrical Engineering, Mathematics
& Computer Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process Annotation –
CoMPAs. Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2003-08

D. Distefano. On Modelchecking the Dynamics of
Object-based Software: a Foundational Approach. Fac-
ulty of Electrical Engineering, Mathematics & Com-
puter Science, UT. 2003-09

M.H. ter Beek. Team Automata – A Formal Approach
to the Modeling of Collaboration Between System Compo-
nents. Faculty of Mathematics and Natural Sciences,
UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Functional Approach
to Software Components. Faculty of Mathematics and
Computer Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios for the Differ-
encing Method. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and Terms and Their
Use in Interactive Theorem Proving. Faculty of Math-
ematics and Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Computing – Splicing
and Membrane systems. Faculty of Mathematics and
Natural Sciences, UL. 2004-03

S. Maneth. Models of Tree Translation. Faculty of
Mathematics and Natural Sciences, UL. 2004-04

Y. Qian. Data Synchronization and Browsing for
Home Environments. Faculty of Mathematics and
Computer Science and Faculty of Industrial Design,
TU/e. 2004-05

F. Bartels. On Generalised Coinduction and Probabilis-
tic Specification Formats. Faculty of Sciences, Divi-
sion of Mathematics and Computer Science, VUA.
2004-06

i
i

i
i

i
i

i
i

L. Cruz-Filipe. Constructive Real Analysis: a Type-
Theoretical Formalization and Applications. Faculty of
Science, Mathematics and Computer Science, KUN.
2004-07

E.H. Gerding. Autonomous Agents in Bargaining
Games: An Evolutionary Investigation of Fundamen-
tals, Strategies, and Business Applications. Faculty of
Technology Management, TU/e. 2004-08

N. Goga. Control and Selection Techniques for the Au-
tomated Testing of Reactive Systems. Faculty of Math-
ematics and Computer Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic: Represen-
tations, Algorithms and Proofs. Faculty of Science,
Mathematics and Computer Science, RU. 2004-10

A. Löh. Exploring Generic Haskell. Faculty of Mathe-
matics and Computer Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning Algorithms for
Car Navigation. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Media Processing
Using Conditionally Guaranteed Budgets. Faculty of
Mathematics and Computer Science, TU/e. 2004-13

J. Pang. Formal Verification of Distributed Systems.
Faculty of Sciences, Division of Mathematics and
Computer Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based Economics.
Faculty of Technology Management, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Estimation Us-
ing a Single Base Station. Faculty of Mathematics and
Computer Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verification and Verified
Distribution. Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA. 2004-17

M.M. Schrage. Proxima - A Presentation-oriented Edi-
tor for Structured Documents. Faculty of Mathematics
and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quantitative Prediction
of Quality Attributes for Component-Based Software Ar-
chitectures. Faculty of Mathematics and Computer
Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Algebra. Faculty of
Mathematics and Computer Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Supervisory Machine
Control by Predictive-Reactive Scheduling. Faculty of
Mechanical Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof System for Multi-
threaded Java -Theory and Tool Support- . Faculty of
Mathematics and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodeling in Bone
Tissue. Faculty of Biomedical Engineering, TU/e.
2005-02

C.N. Chong. Experiments in Rights Control - Expres-
sion and Enforcement. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science, UT. 2005-03

H. Gao. Design and Verification of Lock-free Parallel
Algorithms. Faculty of Mathematics and Computing
Sciences, RUG. 2005-04

H.M.A. van Beek. Specification and Analysis of Inter-
net Applications. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Architecting - A
Systematic Approach to Developing Future-Proof Sys-
tem Architectures. Faculty of Mathematics and Com-
puting Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Techniques in Se-
curity and Fault-Tolerance. Faculty of Electrical En-
gineering, Mathematics & Computer Science, UT.
2005-07

I. Kurtev. Adaptability of Model Transformations. Fac-
ulty of Electrical Engineering, Mathematics & Com-
puter Science, UT. 2005-08

T. Wolle. Computational Aspects of Treewidth - Lower
Bounds and Network Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Procedures for Equality Logic
with Uninterpreted Functions. Faculty of Mathemat-
ics and Computer Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite Populations in
Dynamic Environments. Faculty of Biomedical Engi-
neering, TU/e. 2005-11

J. Eggermont. Data Mining using Genetic Program-
ming: Classification and Symbolic Regression. Faculty
of Mathematics and Natural Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error Messages. Fac-
ulty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of Hybrid Sys-
tems using Simulation Relations. Faculty of Science,
Mathematics and Computer Science, RU. 2005-14

M.R. Mousavi. Structuring Structural Operational
Semantics. Faculty of Mathematics and Computer
Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of Probabilistic Sys-
tems. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2005-16

T. Gelsema. Effective Models for the Structure of pi-
Calculus Processes with Replication. Faculty of Math-
ematics and Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint Solvers. Faculty
of Natural Sciences, Mathematics, and Computer
Science, UvA. 2005-18

i
i

i
i

i
i

i
i

J.J. Vinju. Analysis and Transformation of Source Code
by Parsing and Rewriting. Faculty of Natural Sci-
ences, Mathematics, and Computer Science, UvA.
2005-19

M.Valero Espada. Modal Abstraction and Replication
of Processes with Data. Faculty of Sciences, Division
of Mathematics and Computer Science, VUA. 2005-
20

A. Dijkstra. Stepping through Haskell. Faculty of
Science, UU. 2005-21

Y.W. Law. Key management and link-layer security
of wireless sensor networks: energy-efficient attack and
defense. Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2005-22

E. Dolstra. The Purely Functional Software Deploy-
ment Model. Faculty of Science, UU. 2006-01

R.J. Corin. Analysis Models for Security Protocols.
Faculty of Electrical Engineering, Mathematics &
Computer Science, UT. 2006-02

P.R.A. Verbaan. The Computational Complexity of
Evolving Systems. Faculty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. Formal Specifi-
cation and Analysis of Hybrid Systems. Faculty of
Mathematics and Computer Science and Faculty of
Mechanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of UML Mod-
els: Tool Support and Compositionality. Faculty of
Mathematics and Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed Automata - Tech-
niques and Applications. Faculty of Science, Mathe-
matics and Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewriting. Faculty of
Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-assisted veri-
fication of JML programs. Faculty of Science, Mathe-
matics and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molecular Simulations.
Faculty of Biomedical Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data. Faculty of
Mathematics and Natural Sciences, UL. 2006-10

G. Russello. Separation and Adaptation of Concerns
in a Shared Data Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeterministic and Proba-
bilistic Choices. Faculty of Science, Mathematics and
Computer Science, RU. 2006-12

B. Badban. Verification techniques for Extensions of
Equality Logic. Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal methods and protocol
standardization. Faculty of Mathematics and Com-
puter Science, TU/e. 2006-14

T. Krilavičius. Hybrid Techniques for Hybrid Systems.
Faculty of Electrical Engineering, Mathematics &
Computer Science, UT. 2006-15

	 Acknowledgements
	 Table of Contents
	1 Introduction
	1.1 Hybrid systems
	1.2 Major problems in the area of hybrid systems
	1.2.1 Modelling of hybrid systems
	1.2.2 Analysis of hybrid systems
	1.2.3 Deployment of hybrid systems' models
	1.2.4 Testing of hybrid systems models

	1.3 Main results
	1.4 Outline of the dissertation

	2 Bestiarium of hybrid systems
	2.1 Introduction
	2.2 Examples of hybrid systems
	2.2.1 A bouncing ball
	2.2.2 A thermostat
	2.2.3 A leaking gas burner
	2.2.4 A fluid level controller
	2.2.5 Railroad gate control
	2.2.6 Batch plant control
	2.2.7 Mobile vehicles

	2.3 Conclusions

	3 Overview of models for hybrid systems
	3.1 Introduction
	3.2 Classification of hybrid systems
	3.3 Hybrid formalisms
	3.3.1 Grouping hybrid formalisms
	3.3.2 Piecewise affine systems
	3.3.3 Mixed logical dynamical systems
	3.3.4 Complementarity systems
	3.3.5 Max-min-plus-scaling systems
	3.3.6 Hybrid automata
	3.3.7 Hybrid behavioural automaton
	3.3.8 Hybrid input/output automata
	3.3.9 Process algebras for hybrid systems
	3.3.10 Masaccio
	3.3.11 Charon
	3.3.12 Bond graphs
	3.3.13 Modelica

	3.4 Conclusions

	4 Stability analysis for hybrid automata
	4.1 Introduction
	4.1.1 Stability
	4.1.2 Hybrid stability

	4.2 Notions of stability and hybrid stability
	4.2.1 Stability of dynamical systems
	4.2.2 Stability of hybrid automata

	4.3 Estimating stability of hybrid automaton
	4.3.1 Contractive cycles and stability of hybrid automaton
	4.3.2 Gain automata and algorithm
	4.3.3 Stability of two-dimensional linear continuous hyperplane hybrid automaton

	4.4 Conservative estimation of gains
	4.4.1 Gains
	4.4.2 Calculation of gains
	4.4.3 Optimising the Lyapunov function choice

	4.5 Conclusions

	5 Behavioural Hybrid Process Calculus
	5.1 Introduction
	5.2 Behavioural approach
	5.3 Trajectories
	5.4 Hybrid transition systems
	5.4.1 Bisimulation

	5.5 Language and operational semantics
	5.5.1 Language
	5.5.2 Operational semantics of BHPC
	5.5.3 Consistent signal flow
	5.5.4 Congruence property

	5.6 Expansion law
	5.7 Derived BHPC operators
	5.7.1 Parametrisation of action prefix
	5.7.2 Idling
	5.7.3 Delays
	5.7.4 Guard

	5.8 Application of BHPC
	5.8.1 Bouncing ball
	5.8.2 Thermostat
	5.8.3 Dry friction
	5.8.4 Two tanks

	5.9 An experimental version of calculus
	5.10 Conclusions

	6 BHPC in context of related frameworks
	6.1 Introduction
	6.2 BHPC and hybrid dynamical systems
	6.3 BHPC and transition systems based approaches
	6.3.1 Hybrid automata and BHPC

	6.4 BHPC and simulation languages
	6.5 Conclusions

	7 Simulation of Behavioural Hybrid Process Calculus
	7.1 Introduction
	7.1.1 Simulation of continuous and discrete systems
	7.1.2 Simulation of hybrid systems

	7.2 Behavioural Hybrid Process Calculus simulation algorithm
	7.2.1 Language
	7.2.2 Simulation of process algebras
	7.2.3 Abstract simulation algorithm for BHPC
	7.2.4 Transformation to normal form
	7.2.5 Simulating discrete events
	7.2.6 Simulating continuous-time behaviour

	7.3 Non-determinism
	7.4 Visualisation of models
	7.5 Visualisation of results
	7.5.1 Graphs
	7.5.2 Event traces and message sequence charts
	7.5.3 Combined view
	7.5.4 Visualisation of components

	7.6 Simulation of Zeno behaviour
	7.7 Architecture
	7.8 Simulation modes
	7.9 Tools overview
	7.10 Conclusions

	8 Concluding remarks
	8.1 Hybrid systems
	8.2 Modelling of hybrid systems
	8.3 Analysis of hybrid systems
	8.4 General remarks

	A Stability
	A.1 Proofs from Section 4.3
	A.2 Optimising the Lyapunov function choice

	B Proofs from Chapter 5
	B.1 Proof of Theorem 5.5.4
	B.2 Proof of Theorem 5.5.6
	B.2.1 Formats based proof

	B.3 Proofs of Theorems 5.6.2 and 5.6.3
	B.3.1 Proof of Theorem 5.6.2
	B.3.2 Proof of Theorem 5.6.3

	C Functions from Chapter 7
	D Bhave prototype
	D.1 Functionality and input language
	D.1.1 Simplified treatment of parameters

	D.2 Technical implementation details
	D.3 Examples
	D.4 Conclusions

	 Bibliography
	 Index
	 Summary
	 Samenvatting

